Difference between revisions of "Main Page"
Jump to navigation
Jump to search
Line 95: | Line 95: | ||
'''2019 Student Poster Presentations''' | '''2019 Student Poster Presentations''' | ||
− | *[https:// | + | *[https://drive.google.com/file/d/15Ej_jv9WCY-V-2ri6LeuKRwKvmQHe0AM/view?usp=sharing Data Mining Presentation] |
− | *[https:// | + | *[https://drive.google.com/file/d/18hEPGSqKYvifqEKzizZpRWadfXK7y-rR/view?usp=sharing Machine Learning Presentation] |
− | *[https:// | + | *[https://drive.google.com/file/d/1cvssztV0MDeqJyiZOXH8PrszEj7Jm33-/view?usp=sharing Genomics Presentation] |
'''2018 Student Poster Presentations''' | '''2018 Student Poster Presentations''' | ||
*[https://drive.google.com/file/d/1TGNqkCAV9eBJ_-zHbiU-yo3N4Aowm_HB/view?usp=sharing Imaging Group Presentation] | *[https://drive.google.com/file/d/1TGNqkCAV9eBJ_-zHbiU-yo3N4Aowm_HB/view?usp=sharing Imaging Group Presentation] |
Revision as of 18:18, 28 June 2021
Welcome to the U-M Big Data Summer Institute 2021 Wiki!
Contents
Electronic Health Records Group
Machine Learning Group
Imaging Group
Data Mining Group
Lectures
Week 1
- Study Design and Inference, Observational Data and Bias, Parameter Estimation and Likelihood - Dr. Rod Little
-Part 1, Part 1 Slides -Part 2, Part 2 Slides -Part 3, Part 3 Slides -Part 4, Part 4 Slides -Part 5, Part 5 Slides
- Linear Algebra - Lap Sum Chan
-Recording -Linear Algebra Slides
- Linear Regression - Fatema Shafie Khorassani
-Recording -Linear Regression Slides
- Probability - Rupam Bhattacharyya
-Recording -Probability Slides
- Data Wrangling in R with dplyr - Dr. Matthew Flickinger
-Lecture Slides
- Data Visualization in R with ggplot2 - Dr. Matthew Flickinger
-Lecture Slides
Week 2
- Machine Learning - Dr. Jenna Wiens
- Data Mining - Jiong Zhu
- Logistic Regression - Aubrey Annis
-Recording -Logistic Regression Slides
- Generalized Linear Models - Aubrey Annis
-Recording -GLM Slides
- R Markdown - Dr. Phil Boonstra
-Synchronous Lecture Recording -R Markdown Slides
- Python - Dr. Fred Feng
-Synchronous Lecture Part I and II Recording -Synchronous Lecture Part III and IV Recording
Week 3
- Assessment of Predictive Models - Dr. Phil Boonstra
-Recording
- Causal Inference - Dr. Walter Dempsey
-Recording -Causal Inference Slides
- Model Selection - Nicky Wakim
-Recording -AUC/ROC Recording -Model Selection Slides -Annotated Model Selection Slides
- Data Visualization Workshop
-Synchronous Lecture Recording -Data Visualization Slides
Week 4
- Introduction to Bayes - Dr. Xiaoquan William Wen
- Missing Data - Dr. Peisong Han
- Clustering - Fahad Kamran
Week 5
- Social Networks - Dr. Eytan Adar
- Electronic Health Records - Dr. Xu Shi
- Genetics/Genomics - Dr. Jean Morrison
- Health Disparities in Strokes - Dr. Lynda Lisabeth
- Precision Health - Dr. Sachin Kheterpal
Week 6
- Data Integration and Precision Medicine - Dr. Veera Baladandayuthapani
- Radiation Oncology - Dr. Arvind Rao
- Better, Not Just Bigger Data Analytics - Dr. Brahmajee Nallamothu
- Clinical Trials - Dr. Kelley Kidwell
Week 7
- Preparing for Graduate School - Dr. Kelley Kidwell
- CVs and Resumes - Krystle Forbes
- Scientific Writing - Dr. Brett Griffiths
- Pick Me! - Dr. Brett Griffiths
Week 8
Journey Lectures
Past BDSI Student Poster Presentations
2019 Student Poster Presentations
2018 Student Poster Presentations
- Imaging Group Presentation
- Machine Learning Group Presentation
- Genetics Group Presentation
- Data Mining Presentation
2017 Student Poster Presentations
2017 Symposium Lecturers
- A Time-to-Event Analysis of Heart Failure via Electronic Health Records
- Melanoma Detection by Classifying Skin Lesion Images
- Classifying Skin Lesions Images Using Adaptive Boosting
- Machine Learning Classification of Skin Lesion Images
- Genomics: Genome Storage and Assembly
- Predicting the Transcriptome from the Genome
- Classification of Cell Types from Peripheral Mononuclear Blood Cells
- EHR-Based Study of Long-Term Infectious Diseases
- Visualizing Lab and Phenotype Associations Using PheWAS and Electronic Health Records
- Data Mining: Microenvironment Microarray Spot Based Approach for Cell Prediction
- Estimating Cell Growth with Machine Learning and Data Mining