Main Page

From U-M Big Data Summer Institute Wiki
Jump to navigation Jump to search

Welcome to the U-M Big Data Summer Institute 2021 Wiki!

Electronic Health Records Group

Machine Learning Group

Imaging Group

Data Mining Group

Lectures

Week 1

  • Study Design and Inference, Observational Data and Bias, Parameter Estimation and Likelihood - Dr. Rod Little
  • Linear Algebra - Lap Sum Chan
    -Recording
  • Linear Regression - Fatema Shafie Khorassani
    -Recording
  • Probability - Rupam Bhattacharyya
    -Recording
  • Data Wrangling in R with dplyr - Dr. Matthew Flickinger
  • Data Visualization in R with ggplot2 - Dr. Matthew Flickinger

Week 2

  • Machine Learning - Dr. Jenna Wiens
  • Logistic Regression - Aubrey Annis
  • Generalized Linear Models - Aubrey Annis
  • R Markdown - Dr. Phil Boonstra
  • Python - Dr. Fred Feng

Week 3

  • Assessment of Predictive Models - Dr. Phil Boonstra
  • Causal Inference - Dr. Walter Dempsey
  • Model Selection - Nicky Wakim

Week 4

  • Introduction to Bayes - Dr. Xiaoquan William Wen
  • Missing Data - Dr. Peisong Han
  • Clustering - Fahad Kamran

Week 5

  • Social Networks - Dr. Eytan Adar
  • Electronic Health Records - Dr. Xu Shi
  • Genetics/Genomics - Dr. Jean Morrison
  • Health Disparities in Strokes - Dr. Lynda Lisabeth
  • Precision Health - Dr. Sachin Kheterpal

Week 6

  • Data Integration and Precision Medicine - Dr. Veera Baladandayuthapani
  • Radiation Oncology - Dr. Arvind Rao
  • Better, Not Just Bigger Data Analytics - Dr. Brahmajee Nallamothu
  • Clinical Trials - Dr. Kelley Kidwell

Week 7

  • Preparing for Graduate School - Dr. Kelley Kidwell
  • CVs and Resumes - Krystle Forbes
  • Scientific Writing - Dr. Brett Griffiths
  • Pick Me! - Dr. Brett Griffiths

Week 8

Past BDSI Student Poster Presentations

2019 Student Poster Presentations

2018 Student Poster Presentations

2017 Student Poster Presentations

2017 Symposium Lecturers

Additional Resources