Difference between revisions of "Main Page"
From U-M Big Data Summer Institute Wiki
(→Recorded Lectures) |
|||
(45 intermediate revisions by 2 users not shown) | |||
Line 6: | Line 6: | ||
=== Data Mining Group === | === Data Mining Group === | ||
− | |||
====Papers ==== | ====Papers ==== | ||
*[https://drive.google.com/file/d/1UqhVbAUzIdepGyMQBdkjb77kHdME0TL2/view?usp=sharing Data Instructions] | *[https://drive.google.com/file/d/1UqhVbAUzIdepGyMQBdkjb77kHdME0TL2/view?usp=sharing Data Instructions] | ||
+ | ====HTML Slides ==== | ||
+ | *[https://drive.google.com/file/d/1F-GsnlS4ipQvmOOgKua-KAaaMH1oE7pm/view?usp=sharing 6.19 Slides] | ||
+ | *[https://drive.google.com/file/d/1Hw_lDLxsQFCjklGOlS3RSFDPX6Kn1r4A/view?usp=sharing 6.20 Slides] | ||
+ | *[https://drive.google.com/file/d/16svlI9Hb90jaGt3TTKDRB6SvYEdbMl6w/view?usp=sharing 6.21 Slides] | ||
+ | *[https://drive.google.com/file/d/1_1YKi48Gx2pO71OnuR9DFJQYDJHitA3j/view?usp=sharing 6.22 Slides] | ||
+ | *[https://drive.google.com/file/d/1zRW7VVTgpEoIIuiEzSa1MyJ_QtNC0GKA/view?usp=sharing 6.27 Slides] | ||
+ | *[https://drive.google.com/file/d/170fTV11eeGP6oi6CTp-YESJFGcAKBJRl/view?usp=sharing 6.28 Slides] | ||
+ | *[https://drive.google.com/file/d/1WHg5fZnFy0QFbM-tBkzo0BP4-2RR1I8K/view?usp=sharing 7.2 Slides] | ||
+ | *[https://drive.google.com/file/d/1_Kg-Zjdb1uezb445pb8wZ1ty2JwN5Z3C/view?usp=sharing 7.9 Slides] | ||
+ | *[https://drive.google.com/file/d/1Jgw2NgYbkY0U9gQc9dUl5BTcDUfXCX5o/view?usp=sharing 7.10 Slides] | ||
+ | *[https://drive.google.com/file/d/1i3A8xI2bKjLE8ZrJHTm-CeWrGfSZo4iQ/view?usp=sharing 7.11 Slides] | ||
+ | *[https://drive.google.com/file/d/1GfTMXiXriOJQhpIErcHejBR0xPPgxj9K/view?usp=sharing BDSI Classification 1] | ||
+ | *[https://drive.google.com/file/d/1GfTMXiXriOJQhpIErcHejBR0xPPgxj9K/view?usp=sharing BDSI Classification 2] | ||
=== Machine Learning Group === | === Machine Learning Group === | ||
+ | ====Research Lecture Slides ==== | ||
+ | *[https://drive.google.com/file/d/1HF9cD0cnBEShUVn2Lq9vQYpRxT2ZZ8DJ/view?usp=sharing Introduction] | ||
+ | *[https://drive.google.com/file/d/1LdxCkiFDmWGHcBYsHUw_W54cM6RETp8T/view?usp=sharing Explore MIMIC] | ||
+ | *[https://drive.google.com/file/d/15yChJcEgzHjrn_bhYF7wqaaLh5NMCkzA/view?usp=sharing Getting x and y] | ||
+ | *[https://drive.google.com/file/d/17BCOb3-t5ZJ3eE0Yy9rjlOGn0cn36PUp/view?usp=sharing Some tips] | ||
+ | *[https://drive.google.com/file/d/1T8PEwWfi7PA8uMnuA9_kF6BSz69A6VKM/view?usp=sharing Sample Pipeline] | ||
+ | *[https://drive.google.com/file/d/1OBckV_yjuYrl36tOF1lAKiOcWJA8-q34/view?usp=sharing Training Pipleline] | ||
+ | *[https://drive.google.com/file/d/1i1nel98HYV1mSpro5SaDoMdOqMH5i5Gr/view?usp=sharing CNN] | ||
+ | *[https://drive.google.com/file/d/1y14n4kl9u4LBQ9M5AnP6knFZpfwgOUAW/view?usp=sharing LSTM] | ||
+ | *[https://drive.google.com/file/d/1XF-P43lIhYXU0HnS0pyGrIvPzF4HiB0B/view?usp=sharing Structuring] | ||
+ | *[https://drive.google.com/file/d/12HgspYuZAVVSU49c8AEs8FPqZyoF3c1E/view?usp=sharing Dataset and DataLoader] | ||
+ | *[https://drive.google.com/file/d/1vnUj-Stf5arWNyLguCPuCm1OYRwZGGr1/view?usp=sharing pytorch models] | ||
+ | *[https://drive.google.com/file/d/1-r9sC3GMH_qVL3SCsPBgkDh9upS3hfEM/view?usp=sharing Model Development] | ||
+ | *[https://drive.google.com/file/d/1n2md6F3XQ85WOgMV_20G_DgFqmmBgU3k/view?usp=sharing Population] | ||
+ | *[https://drive.google.com/file/d/1HEAWEbwP7R1o-UZ1NcrMp2C0Ub3ivAzK/view?usp=sharing Benchmark Features] | ||
+ | *[https://drive.google.com/file/d/1QpFDYzmyQBvvT9tk4Nr7EYIbh8mMmMOr/view?usp=sharing Inclusion Exclusion] | ||
+ | ====Lecture Notes==== | ||
+ | *[https://drive.google.com/file/d/1ogusN8iQqfEfmarjKUqKtFZaSX-LZw3k/view?usp=sharing Recurrent Neural Networks] | ||
+ | *[https://drive.google.com/file/d/11sJeWngMmTpX_PWcobdxX180_xEzOfV-/view?usp=sharing Convolutional Neural Networks] | ||
+ | *[https://drive.google.com/file/d/17m8Y5DcmJCeHgB1spA_b27WYJvzyhLi4/view?usp=sharing Deep Learning] | ||
*[https://drive.google.com/open?id=19qcnGMIdoYZ9mvPwsU2kAvZcqArmd6oO BDSI Lecture] | *[https://drive.google.com/open?id=19qcnGMIdoYZ9mvPwsU2kAvZcqArmd6oO BDSI Lecture] | ||
*[https://drive.google.com/open?id=1gZtk4LjLDcdUSBEsNZ1qTJ2UHRDL--JO Flux Guide] | *[https://drive.google.com/open?id=1gZtk4LjLDcdUSBEsNZ1qTJ2UHRDL--JO Flux Guide] | ||
*[https://drive.google.com/open?id=1XDX7hkicATX0y7cVDb9PDCsPZo1gLdPi Python Guide] | *[https://drive.google.com/open?id=1XDX7hkicATX0y7cVDb9PDCsPZo1gLdPi Python Guide] | ||
*[https://drive.google.com/open?id=1kueXa-kFk6DiKVqItTEL-sFT_xmHg9Fb Python Tutorial] | *[https://drive.google.com/open?id=1kueXa-kFk6DiKVqItTEL-sFT_xmHg9Fb Python Tutorial] | ||
+ | ====Readings==== | ||
+ | *[https://drive.google.com/file/d/1dvEdmapBY-jgdLOCZLdPwDgbybTWEni9/view?usp=sharing ARF Epidemiology] | ||
+ | *[https://drive.google.com/file/d/1EzJxIVlXgkGGge20eHGC5HGtl-E7CPO_/view?usp=sharing CNN for Sentence Clarification] | ||
+ | *[https://drive.google.com/file/d/1rdUGIYh7WkI4qbaJEQjaIXxaXtYYDvQN/view?usp=sharing Learning from Heterogenous Temporal Data] | ||
+ | *[https://drive.google.com/file/d/12aIplGTH982iBvR7Kao6UBk2lY9Q3311/view?usp=sharing MIMC 3] | ||
+ | *[https://drive.google.com/file/d/1jQVuZfnbrxzu79ujr_uKYQGvJVmkoJGy/view?usp=sharing MIMIC Benchmarks and Multitask RNN] | ||
+ | *[https://drive.google.com/file/d/1uh5U_-3NIoUUM7aItA39iTGNkgwI01M7/view?usp=sharing RNNs for Multivariate Time Series] | ||
+ | *[https://drive.google.com/file/d/1r1y4gez3o46mbqkaWP3umHJv6o6uvzf-/view?usp=sharing TREWScore for Septic Shock] | ||
+ | *[https://drive.google.com/file/d/1EZnegIgxpmKNLorKwtkh8Veh5kIJu-lV/view?usp=sharing TREWScore Supplement] | ||
=== Genomics Group === | === Genomics Group === | ||
Line 20: | Line 61: | ||
===== Lectures ===== | ===== Lectures ===== | ||
*[https://drive.google.com/open?id=19jBLxGLRKtJD-5Id-H3d0AK0Vu_dfGko BDSI Genomics Intro] | *[https://drive.google.com/open?id=19jBLxGLRKtJD-5Id-H3d0AK0Vu_dfGko BDSI Genomics Intro] | ||
+ | *[https://drive.google.com/file/d/1nZkKKbwgRWkfEeyEGzsueJ8Dh_Zjahpv/view?usp=sharing PopGen Intro] | ||
===== Intro Exercises ===== | ===== Intro Exercises ===== | ||
*[https://drive.google.com/open?id=1Wl1JensClieYfVNIcTWzJVxN_N7Tugte Single Cell Exercise] | *[https://drive.google.com/open?id=1Wl1JensClieYfVNIcTWzJVxN_N7Tugte Single Cell Exercise] | ||
*[https://drive.google.com/open?id=18yGPNL0ZhxJR6Rya4K1IDnH1E8Yz6sjS Single Cell R Code] | *[https://drive.google.com/open?id=18yGPNL0ZhxJR6Rya4K1IDnH1E8Yz6sjS Single Cell R Code] | ||
+ | *[https://drive.google.com/file/d/1hFlCoxcw758XGfm_LrY6T9kuH6c0R6pJ/view?usp=sharing Intro Integrative] | ||
===== Papers ===== | ===== Papers ===== | ||
Line 187: | Line 230: | ||
=== <u>Week 3</u> === | === <u>Week 3</u> === | ||
==== Day 11: July 2 ==== | ==== Day 11: July 2 ==== | ||
+ | *[https://drive.google.com/file/d/1pQUltPS9vOortgDoeJ-u-lMSv3Dg0o9H/view?usp=sharing Information Visualization Slides] - Kay | ||
+ | *[https://drive.google.com/file/d/19eonASEWp3gRKiTH8x_NwbYluefaARED/view?usp=sharing Data Mining Slides] - Najarian | ||
=====Recorded Lectures===== | =====Recorded Lectures===== | ||
− | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=523fba18-c518-4adb-8a33-a91100d68d51 Data Mining] - | + | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=523fba18-c518-4adb-8a33-a91100d68d51 Data Mining] - Najarian |
*[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=624967a6-e082-4cb4-b762-a91100f3129c Information Visualization] - Kay | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=624967a6-e082-4cb4-b762-a91100f3129c Information Visualization] - Kay | ||
==== Day 12: July 3 ==== | ==== Day 12: July 3 ==== | ||
+ | *[https://drive.google.com/file/d/16EFWt1-YRVYZ-CPdjU1bBPdEOICgEqwz/view?usp=sharing Data Mining 2 Slides] - Najarian | ||
+ | *[https://drive.google.com/file/d/13W4pfNnQ6bpKkauWbgAt5A2F0aEMDM5k/view?usp=sharing Bayes Slides] - Wen | ||
=====Recorded Lectures===== | =====Recorded Lectures===== | ||
− | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d5e31bac-36a4-4fd0-9ea3-a91200d65459 Data Mining 2] - | + | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d5e31bac-36a4-4fd0-9ea3-a91200d65459 Data Mining 2] - Najarian |
*[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=b25cbf29-0c99-4923-8ff7-a91200f2ea45 Bayesian Statistics] - Wen | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=b25cbf29-0c99-4923-8ff7-a91200f2ea45 Bayesian Statistics] - Wen | ||
Line 199: | Line 246: | ||
==== Day 14: July 5 ==== | ==== Day 14: July 5 ==== | ||
+ | *[https://drive.google.com/file/d/1mU0TRlGd_26eXJySxp3Q8K3ZNJXP4iKv/view?usp=sharing Bayes Slides 2] - Wen | ||
+ | *[https://drive.google.com/file/d/1SsI4RNYAfCLSbI1vrwvm6WW6V8DfhvV3/view?usp=sharing Information Visualization 2 Slides] - Kay | ||
+ | =====Recorded Lectures===== | ||
+ | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d1348177-aee8-4b8a-ab1b-a91400d78ef2 Information Visualization 2] - Kay | ||
+ | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=4c70691f-4af6-4378-81e2-a91400e576d9 Information Visualization 2 Contd.] - Kay | ||
+ | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=dbdfc02a-fa2a-41d0-9f38-a91400f301c3 Bayesian Statistics 2] - Wen | ||
==== Day 15: July 6 ==== | ==== Day 15: July 6 ==== | ||
− | + | *[https://drive.google.com/file/d/1Vrs7fAuqH8t3GHc8peDLlkL2MuPabKrX/view?usp=sharing Grad School Slides] - Kidwell | |
+ | =====Recorded Lectures===== | ||
+ | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=9f0b4930-ae0b-4b46-90ac-a91500d736b4 Grad School] - Kidwell | ||
=== <u>Week 4</u> === | === <u>Week 4</u> === | ||
==== Day 16: July 9 ==== | ==== Day 16: July 9 ==== | ||
− | + | *[https://drive.google.com/file/d/1rf01mdHYE7Yr_fuxVy-StcdUq8AkEL-P/view?usp=sharing Troubleshooting R Slides] - Flickinger | |
+ | *[https://drive.google.com/file/d/1liiNZJNO-qlNgzUbYdgzASnJbpUfi9_C/view?usp=sharing Troubleshooting R code] - Flickinger | ||
+ | =====Recorded Lectures===== | ||
+ | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=b5ddefb5-2e4f-4139-abff-a91800d6d08a Computing] - Sun | ||
+ | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=2cb79238-aeff-4e8c-890c-a91800f2fff6 Troubleshooting R] - Flickinger | ||
==== Day 17: July 10 ==== | ==== Day 17: July 10 ==== | ||
− | + | *[https://drive.google.com/file/d/1Nk0uNN-7VDuXzIftHFpripcNNkAvEY0P/view?usp=sharing Bayesian Data Analysis] - Chen | |
+ | =====Recorded Lectures===== | ||
+ | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=bacd91ab-2cc9-4695-a26a-a91900d8e1d2 Bayesian Data Analysis pt 1] - Chen | ||
+ | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=34af7429-ee17-4641-8be4-a91900f30839 Bayesian Data Analysis pt 2] - Chen | ||
==== Day 18: July 11 ==== | ==== Day 18: July 11 ==== | ||
− | + | *[https://drive.google.com/file/d/1Ycn2inNz8vgl8WqlLvjl93dKh_G0gXec/view?usp=sharing Quinn Research Slides] - Quinn | |
+ | =====Recorded Lectures===== | ||
+ | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=61c8da1d-2532-4e31-a97a-a91a00f33b66 Qunn Lecture] - Quinn | ||
==== Day 19: July 12 ==== | ==== Day 19: July 12 ==== | ||
+ | *[https://drive.google.com/file/d/1YfvcL0-nPdajVxQSqwfz8p1rUtfpeygN/view?usp=sharing Predictive Analytics Slides] - Denton | ||
==== Day 20: July 13 ==== | ==== Day 20: July 13 ==== | ||
− | + | *[https://drive.google.com/file/d/1OCKujwZEXYVfyxgsmibwpJvnezwHPiZw/view?usp=sharing Resume/CV Slides] - Forbes | |
+ | *[https://drive.google.com/file/d/1A6_90NN2kHx6b4go9VB5JWn3VilP4YsL/view?usp=sharing Resume Rubric] - Forbes | ||
+ | =====Recorded Lectures===== | ||
+ | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=0b4d27bd-a831-4890-b09c-a91c00d84978 Resume/CVs Lecture] - Forbes | ||
=== <u>Week 5</u> === | === <u>Week 5</u> === | ||
==== Day 21: July 16 ==== | ==== Day 21: July 16 ==== | ||
+ | *[https://drive.google.com/file/d/1bFHy0xIXkfo14UFW_1xNO3cgVmhGV7lI/view?usp=sharing Natural Language Processing Slides] - Karandeep | ||
+ | =====Recorded Lectures===== | ||
+ | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=64bed0b1-05b0-434d-9391-a91f00d7c476 Natural Language Processing Lecture] - Karandeep | ||
==== Day 22: July 17 ==== | ==== Day 22: July 17 ==== | ||
+ | *[https://drive.google.com/file/d/1e5k7N4sxRQe7cO5GM9PWZkeXrBK-Vlu0/view?usp=sharing Optimization] - Jiang | ||
+ | =====Recorded Lectures===== | ||
+ | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=fd5c0ca6-e387-48e0-8109-a92000d902ae Optimization Lecture] - Jiang | ||
==== Day 23: July 18 ==== | ==== Day 23: July 18 ==== | ||
+ | *[https://drive.google.com/file/d/1bvIANAi2QBligYMu5r1zYhElmS4KIOc6/view?usp=sharing Scientific Presentations Slides] - Zoellner | ||
+ | =====Recorded Lectures===== | ||
+ | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=3790173a-b6db-403b-832b-a92100f32394 Scientific Presentations Lecture] - Zoellner | ||
+ | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=4b34ca7b-86c7-4678-b514-a92100d7a146 Pick Me Lecture] - Griffiths | ||
==== Day 24: July 19 ==== | ==== Day 24: July 19 ==== | ||
+ | *[https://drive.google.com/file/d/1jqQ0MiJgYm9bGlXzE5upRKuGLCD7rdyy/view?usp=sharing Epigenomics Slides] - Smith | ||
+ | *[https://drive.google.com/file/d/1EM9pWl2lRZ7d5-zdp0mAtC6vOjCPklPb/view?usp=sharing Epigenomics Reading] - Smith | ||
+ | *[https://drive.google.com/file/d/1zqtg9Zda9GY7_NFIQmgUwlD98nAQjGT-/view?usp=sharing Zhong Research] - Smith | ||
+ | *[https://drive.google.com/file/d/1Bq0tP_VOnB6u3H6xTE_GqAd171PaBTDD/view?usp=sharing Epigenomics Supplementary Tables 1-5] - Smith | ||
+ | *[https://drive.google.com/file/d/1HW_xukUj2KBENKxwmQK_zuAvLNuUNm2a/view?usp=sharing Epigenomics Supplementary Table 6] - Smith | ||
+ | |||
+ | =====Recorded Lectures===== | ||
+ | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=fcce8e3b-8316-4f9a-a082-a92200d76e40 Epigenomics Lecture] - Smith | ||
+ | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=8d883801-6438-4c67-83dc-a92200f34d6a Social Network Lecture] - Budak | ||
==== Day 25: July 20 ==== | ==== Day 25: July 20 ==== | ||
− | + | *[https://drive.google.com/file/d/1J_zJfBR-7KJGL7IjCXwBZOhdvPaCCjDx/view?usp=sharing Mathematical Modeling Slides] - Eisenberg | |
− | = | + | *[https://drive.google.com/file/d/1GqsaDfVW7V0Bvn2l5iHXvsSv9SQ_FmwT/view?usp=sharing PolyA Simulation] - Eisenberg |
− | ==== | + | *[https://drive.google.com/file/d/1M2AF0lAjomIpONZcdgWCuJMC-L-MKYc8/view?usp=sharing PolyA R code] - Eisenberg |
− | + | =====Recorded Lectures===== | |
− | + | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=dddff986-d7ae-46c9-b14d-a92300d7e0bf Mathematical Modeling Lecture] - Eisenberg | |
− | + | *[https://sph.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=475a0ca7-f65d-4af2-ae73-a92300f39603 Journey Lecture] - Pedro Orozco, BDSI Student Coordinator | |
− | |||
== Day 29: Symposium == | == Day 29: Symposium == | ||
− | + | '''2018 Professor Lectures Presentations''' | |
− | '''Student Poster Presentations''' | + | *[https://drive.google.com/file/d/19QJ9SmqsCP66urThKu5hlSxZdobyAd7z/view?usp=sharing 2018 Symposium Flyer] |
+ | *[https://drive.google.com/file/d/1ukz_fd4kLGR2JaqjbAdFz6HuRmkD9BdM/view?usp=sharing Symposium Welcome Remarks] | ||
+ | *[https://drive.google.com/file/d/1yUAUsxe_aElBdfZDItsdkBFKgJs9Ig8N/view?usp=sharing Calibration Concordance] - Chen | ||
+ | *[https://drive.google.com/file/d/1U8Rt4mDPAmZuqv9RXhsPkMnL1VmoI3G0/view?usp=sharing Data Science and Predictive Health Analytics] - Dinov | ||
+ | *[https://drive.google.com/file/d/118HtI_euaMBmCl7-bibqDYJPRlablmOY/view?usp=sharing Models of Human Choice] - Feinberg | ||
+ | *[https://drive.google.com/file/d/1O3q32tp2J87Tmigz75ozVAonX-YYKwam/view?usp=sharing Linking Tumor with Personalized Medicine] - Rao | ||
+ | *[https://drive.google.com/file/d/1eFBzOkXbNyaP4s0o7kemHVSbhgxfqUmz/view?usp=sharing Humanist Approach to Data Science] - Schutt | ||
+ | *[https://drive.google.com/file/d/1kuDFENM8UwzxL_ve70jwca717RTDjzXA/view?usp=sharing Big Data in the Social Sciences] - Titunik | ||
+ | *[https://drive.google.com/file/d/19bnSFP9xPQg7i6lQ1bdO439Gj7iyf1R9/view?usp=sharing Detecting Epistasis in Large Scale Genetic Mapping] - Zhou | ||
+ | '''2018 Student Poster Presentations''' | ||
+ | *[https://drive.google.com/file/d/1TGNqkCAV9eBJ_-zHbiU-yo3N4Aowm_HB/view?usp=sharing Imaging Group Presentation] | ||
+ | *[https://drive.google.com/file/d/1S01_WV6wfJ6BE2Op-01byw0WFUZadPjR/view?usp=sharing Machine Learning Group Presentation] | ||
+ | *[https://drive.google.com/file/d/1LlZgR4TAlyYaS88bQ6qgZncWFuS0lFuC/view?usp=sharing Genetics Group Presentation] | ||
+ | *[https://drive.google.com/file/d/1HqWZFGjHgIYOoqqlpQxc0qn9y7PTa4hD/view?usp=sharing Data Mining Presentation] | ||
+ | '''2017 Student Poster Presentations''' | ||
+ | *[https://drive.google.com/file/d/0B2ht_TCS6xC-WFNPZzd5TndqZ0U/view?usp=sharing Data Mining/ Machine Learning] | ||
+ | *[https://drive.google.com/file/d/0B2ht_TCS6xC-S2xrUFM0ZEI3dGM/view?usp=sharing Electronic Health Records (EHR)] | ||
+ | *[https://drive.google.com/file/d/0B2ht_TCS6xC-NEZ1YnQyVW0tREE/view?usp=sharing Genomics] | ||
+ | *[https://drive.google.com/file/d/0B2ht_TCS6xC-cDVJNUtIcjRjcFE/view?usp=sharing Imaging] | ||
+ | =====2017 Symposium Reference Files===== | ||
+ | *[https://drive.google.com/file/d/1zwuVp6_sIRIlKx79-i0uZRp6Gtooi6g8/view?usp=sharing 2017 Symposium Program] | ||
+ | *[https://drive.google.com/file/d/18FfpzqxwPSunJfHM3pHDxYYggAPlKgWX/view?usp=sharing 2017 Symposium Flyer] | ||
+ | ======2017 Symposium Projects====== | ||
+ | *[https://drive.google.com/file/d/0B2ht_TCS6xC-Zm5RWHByeWdUd2M/view?usp=sharing A Time-to-Event Analysis of Heart Failure via Electronic Health Records] | ||
+ | *[https://drive.google.com/file/d/0B2ht_TCS6xC-UEIwRVNZaVJXRFk/view?usp=sharing Melanoma Detection by Classifying Skin Lesion Images] | ||
+ | *[https://drive.google.com/file/d/0B2ht_TCS6xC-VEk4RExSSkV3NGM/view?usp=sharing Classifying Skin Lesions Images Using Adaptive Boosting] | ||
+ | *[https://drive.google.com/file/d/0B2ht_TCS6xC-RDR1UmtsV3hFUVk/view?usp=sharing Machine Learning Classification of Skin Lesion Images] | ||
+ | *[https://drive.google.com/file/d/0B2ht_TCS6xC-YWs0alJGdTA3UE0/view?usp=sharing Genomics: Genome Storage and Assembly] | ||
+ | *[https://drive.google.com/file/d/0B2ht_TCS6xC-SU1KWFdPcWZzMEk/view?usp=sharing Predicting the Transcriptome from the Genome] | ||
+ | *[https://drive.google.com/file/d/0B2ht_TCS6xC-VGhDZlZZeHAyRDQ/view?usp=sharing Classification of Cell Types from Peripheral Mononuclear Blood Cells] | ||
+ | *[https://drive.google.com/file/d/0B2ht_TCS6xC-bzRTUTlQek9JRGM/view?usp=sharing EHR-Based Study of Long-Term Infectious Diseases] | ||
+ | *[https://drive.google.com/file/d/0B2ht_TCS6xC-VjRsZkJfalVNbVk/view?usp=sharing Visualizing Lab and Phenotype Associations Using PheWAS and Electronic Health Records] | ||
+ | *[https://drive.google.com/file/d/0B2ht_TCS6xC-NXJoemNibTFxZXc/view?usp=sharing Data Mining: Microenvironment Microarray Spot Based Approach for Cell Prediction] | ||
+ | *[https://drive.google.com/file/d/0B2ht_TCS6xC-VDdJQmtOZHR6RE0/view?usp=sharing Estimating Cell Growth with Machine Learning and Data Mining] | ||
== Additional Resources == | == Additional Resources == | ||
* [[DataCamp Resources]] | * [[DataCamp Resources]] | ||
* [[https://drive.google.com/file/d/15pPcBQrTBj9ze9VthpTZLmkEa3yRaz8T/view?usp=sharing Daily Schedule]] - Last update July 3, 2018 | * [[https://drive.google.com/file/d/15pPcBQrTBj9ze9VthpTZLmkEa3yRaz8T/view?usp=sharing Daily Schedule]] - Last update July 3, 2018 |
Latest revision as of 08:36, 27 July 2018
Welcome to the U-M Big Data Summer Institute 2018 Wiki!
Consult the User's Guide for information on using the wiki software.
Contents
[hide]- 1 Reading Material
- 2 2018 Presentations
- 3 Day 29: Symposium
- 4 Additional Resources
Reading Material
Data Mining Group
Papers
HTML Slides
- 6.19 Slides
- 6.20 Slides
- 6.21 Slides
- 6.22 Slides
- 6.27 Slides
- 6.28 Slides
- 7.2 Slides
- 7.9 Slides
- 7.10 Slides
- 7.11 Slides
- BDSI Classification 1
- BDSI Classification 2
Machine Learning Group
Research Lecture Slides
- Introduction
- Explore MIMIC
- Getting x and y
- Some tips
- Sample Pipeline
- Training Pipleline
- CNN
- LSTM
- Structuring
- Dataset and DataLoader
- pytorch models
- Model Development
- Population
- Benchmark Features
- Inclusion Exclusion
Lecture Notes
- Recurrent Neural Networks
- Convolutional Neural Networks
- Deep Learning
- BDSI Lecture
- Flux Guide
- Python Guide
- Python Tutorial
Readings
- ARF Epidemiology
- CNN for Sentence Clarification
- Learning from Heterogenous Temporal Data
- MIMC 3
- MIMIC Benchmarks and Multitask RNN
- RNNs for Multivariate Time Series
- TREWScore for Septic Shock
- TREWScore Supplement
Genomics Group
Lectures
Intro Exercises
Papers
Population Genetics
Single Cell RNA
Transcriptomics
Online videos to better understand genetics and genomics
Genetics
- Introduction to Genetics by 23andMe (5 videos)
- TED-Ed : How Mendel's pea plants helped us understand genetics - Hortensia Jiménez Díaz
- Genetic Recombination and Gene Mapping by Bozeman Science
- Useful Genetics : A college-level comprehensive genetics course with 292 lectures offered by Rosie Redfield at UBC
Useful 3D Animations
- From DNA to protein - 3D Animation
- DNA Transcription - 3D Animation
- DNA splicing - 3D Animation
- mRNA Translation - 3D Animation
- How DNA is packaged - 3D Animation
- The Central Dogma - 3D Animation
Gene Regulation and Epigenetics
- Epigenetics Lecture by SciShow
- Hi-C Technique : A 3D map of the Human Genome
- The ENCODE Project
- RNAi by Nature Video
Sequencing Technologies
- TED-Ed : The race to sequence the human genome - Tien Nguyen
- DropSeq - Droplet-based Single Cell Sequencing by McCarroll Lab
Imaging Group
Papers
2018 Presentations
Week 1
Day 0: June 17
- Orientation Slides 2018 - Bhramar Mukherjee, PhD
Day 1: June 18
- Welcome Slides 2018 - Bhramar Mukherjee, PhD
- Training for Responsible Conduct in Research - Bhramar Mukherjee, PhD
- BDSIOrientationSupplement - Bhramar Mukherjee, PhD
- BDSI Event Presentation - Robert Peng
- BDSI Life in Ann Arbor - Stephen Salermo
- Al-Marzouki_s05 - The effect of scientific misconduct on the results of clinical trials: A Delphi survey
- baggerlycoombes - Deriving chemosensitivity from cell lines: forensic bioinformatics and reproducible research in high-throughput biology
- ethicalguidelines Ethical Guidelines for Statistical Practice
- ODS - On being a scientist 2009
- breiman - Statistical Modeling: The Two Cultures
- breimaninterview - A conversation with Leo Breiman
Recorded Lectures
Day 2: June 19
- Study design and inference. - Roderick Little, PhD
- Reproducible Research - Jedidiah Carlson
- Data Processing - Jed Carlson
- cameronpaulingpnas1976 - Supplemental ascorbate in the supportive treatment of cancer: Prolongation of survival times in terminal human cancer.
- comroe1977 - Experimental studies designed to evaluate the management of patients with incurable cancer
- CREAGAN - Failure of High-Dose Vitamin C therapy to benefit patients with advanced cancer
- neyman34jrss - On the Two Different Aspects of the Representative Method: The Method of Stratified Sampling and the Method of Purposive Selection
Recorded Lectures
- Reproducible Research - J. Carlson
- Study design and Inference - R. Little
Day 3: June 20
- Observational Data - Roderick Little, PhD
- castnejm1989 - Preliminary report
- Tocainideahj80 - Prophylaxis of ventricular tachyarrythmias
- wakefieldlancet - Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children
- R intro file - Matthew Flickinger
- R intro Lecture - Matthew Flickinger
- Linear Algebra - Klemmer
- Matrix Algebra Lecture - Klemmer
Recorded Lectures
- Big Data pt. 2 - Roderick Little, PhD
- Linear Algebra - Klemmer
Day 4: June 21
- Linear Regression Slides - Matthew Zawistowski
- Logistic Regression Slides - Matthew Zawistowski
- R dplyr Slides - Matthew Flickinger
- dplyr R code - Flickinger
- dplyr R Flights - Flickinger
- dplyr OCSLS - Flickinger
Recorded Lectures
- dplyr - Matthew Flickinger
- Logistic Regression - Matthew Zawistowski
- Linear Regression - Matthew Zawistowski
Day 5: June 22
- State of Institute Slides - Bhramar Mukherjee, PhD
- Big Data 3 Slides - Roderick Little, PhD
- ggPlot 2 Slides - Matthew Flickinger, PhD
- Dplyr_Sms
- ggplot2
- Parameter Estimation - Roderick Little, PhD
- Fisher22philtransa - On the Mathematical Foundations of Theoretical Statistics
Recorded Lectures
- Parameter Estimation - Rod Little
- Journey Lecture - Sanchez
Week 2
Day 6: June 25
- Matrix Computations - Peisong Han
- Model Selection - Lauren Beesley
- Python Lecture 1 - Max Smith
- Python Notebook 1 - Max Smith
Recorded Lectures
- Matrix Computations - Han
Day 7: June 26
- Model Selection II - Lauren Beesley
- Machine Learning - Jenna Wiens
- Python Lecture 2 - Max Smith
- Python Notebook 2 - Max Smith
Recorded Lectures
Day 8: June 27
- Clustering - Danai Koutra
- Machine Learning II - Jenna Wiens
- Python Lecture 3 - Max Smith
- Python Notebook 3 - Max Smith
Day 9: June 28
- Casual Interference Slides - Zhenke Wu
- Clustering Part 2 Slides - Danai Koutra
Recorded Lectures
Day 10: June 29
- R Loops Slides - Flickinger
- dplyr NYC Flights
- dplyr OCSLS
- dplyr sms
- ggplot MPG
- ggplot NYC Flights
- R Simulations
Recorded Lectures
- Reading Like A Scientist - Griffiths
- R and Loops - Flickinger
Week 3
Day 11: July 2
- Information Visualization Slides - Kay
- Data Mining Slides - Najarian
Recorded Lectures
- Data Mining - Najarian
- Information Visualization - Kay
Day 12: July 3
- Data Mining 2 Slides - Najarian
- Bayes Slides - Wen
Recorded Lectures
- Data Mining 2 - Najarian
- Bayesian Statistics - Wen
Day 13: July 4 (NO CLASS)
Day 14: July 5
- Bayes Slides 2 - Wen
- Information Visualization 2 Slides - Kay
Recorded Lectures
- Information Visualization 2 - Kay
- Information Visualization 2 Contd. - Kay
- Bayesian Statistics 2 - Wen
Day 15: July 6
- Grad School Slides - Kidwell
Recorded Lectures
- Grad School - Kidwell
Week 4
Day 16: July 9
- Troubleshooting R Slides - Flickinger
- Troubleshooting R code - Flickinger
Recorded Lectures
- Computing - Sun
- Troubleshooting R - Flickinger
Day 17: July 10
- Bayesian Data Analysis - Chen
Recorded Lectures
- Bayesian Data Analysis pt 1 - Chen
- Bayesian Data Analysis pt 2 - Chen
Day 18: July 11
- Quinn Research Slides - Quinn
Recorded Lectures
- Qunn Lecture - Quinn
Day 19: July 12
- Predictive Analytics Slides - Denton
Day 20: July 13
- Resume/CV Slides - Forbes
- Resume Rubric - Forbes
Recorded Lectures
- Resume/CVs Lecture - Forbes
Week 5
Day 21: July 16
- Natural Language Processing Slides - Karandeep
Recorded Lectures
- Natural Language Processing Lecture - Karandeep
Day 22: July 17
- Optimization - Jiang
Recorded Lectures
- Optimization Lecture - Jiang
Day 23: July 18
- Scientific Presentations Slides - Zoellner
Recorded Lectures
- Scientific Presentations Lecture - Zoellner
- Pick Me Lecture - Griffiths
Day 24: July 19
- Epigenomics Slides - Smith
- Epigenomics Reading - Smith
- Zhong Research - Smith
- Epigenomics Supplementary Tables 1-5 - Smith
- Epigenomics Supplementary Table 6 - Smith
Recorded Lectures
- Epigenomics Lecture - Smith
- Social Network Lecture - Budak
Day 25: July 20
- Mathematical Modeling Slides - Eisenberg
- PolyA Simulation - Eisenberg
- PolyA R code - Eisenberg
Recorded Lectures
- Mathematical Modeling Lecture - Eisenberg
- Journey Lecture - Pedro Orozco, BDSI Student Coordinator
Day 29: Symposium
2018 Professor Lectures Presentations
- 2018 Symposium Flyer
- Symposium Welcome Remarks
- Calibration Concordance - Chen
- Data Science and Predictive Health Analytics - Dinov
- Models of Human Choice - Feinberg
- Linking Tumor with Personalized Medicine - Rao
- Humanist Approach to Data Science - Schutt
- Big Data in the Social Sciences - Titunik
- Detecting Epistasis in Large Scale Genetic Mapping - Zhou
2018 Student Poster Presentations
- Imaging Group Presentation
- Machine Learning Group Presentation
- Genetics Group Presentation
- Data Mining Presentation
2017 Student Poster Presentations
2017 Symposium Reference Files
2017 Symposium Projects
- A Time-to-Event Analysis of Heart Failure via Electronic Health Records
- Melanoma Detection by Classifying Skin Lesion Images
- Classifying Skin Lesions Images Using Adaptive Boosting
- Machine Learning Classification of Skin Lesion Images
- Genomics: Genome Storage and Assembly
- Predicting the Transcriptome from the Genome
- Classification of Cell Types from Peripheral Mononuclear Blood Cells
- EHR-Based Study of Long-Term Infectious Diseases
- Visualizing Lab and Phenotype Associations Using PheWAS and Electronic Health Records
- Data Mining: Microenvironment Microarray Spot Based Approach for Cell Prediction
- Estimating Cell Growth with Machine Learning and Data Mining
Additional Resources
- DataCamp Resources
- [Daily Schedule] - Last update July 3, 2018