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Prostate Cancer (PCa)

• PCa is the most common cancer affecting men world-wide 

• Many PCa’s are low risk, slow growing, and unlikely to cause harm

• Widespread PCa screening has led to overtreatment – the treatment 
of cases that would not have caused clinical consequences if left 
untreated
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Active surveillance for low-risk PCa
patients reduces overtreatment

• Active Surveillance defers or avoids immediate 
curative treatment until there is evidence of 
disease progression

• Involves monitoring “low-risk” PCa with prostate 
specific antigen (PSA) tests and prostate 
biopsies
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Biopsies can detect cancer but they cause harm 
to patients

• Biopsy involves sampling with hollow core 
needles

• Typically removes 12 cores of tissue from 
the different parts of the prostate

• Samples less than 1% of the entire 
prostate gland

• False negative results are common http://mdxhealth.com/confirmmdx-prostate-cancer
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Doctors Don’t Agree on the Best Biopsy Strategy

Study Recommended Biopsy Plan

Johns Hopkins (JH) Annual biopsy

University of California, San Francisco
(UCSF)

Biopsy 1 year after diagnosis, then 
every 1 to 2 years

PRIAS Project Biopsy 1 year after diagnosis, then 
every 3 years
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The PRIAS Project (Prostate Cancer Research International Active Surveillance) is a 
European initiative but open to all and has participation from countries all over the 
world. 

http://www.prias-project.org/


Research Questions

• How often should patients on AS receive a 
prostate biopsy?

• Under-testing → delays detection of progression 
and subsequent treatment

• Over-testing → increases stress and risk of 
infection for patient

• Can strategies based on personalized risk 
improve AS?
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A Data-driven Optimization Framework
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Collect 
Observational 

Data

Fit a Descriptive 
Model (HMM) 

Build and Solve 
a Decision 

(POMDP) Model

Conclude the 
Optimal 
Strategy

Use the data to estimate 
the stochastic system of 

active surveillance

Solve the optimal 
strategy under the 
estimated system

Validate the model and 
strategy using 

bootstrapping and cross 
validation



The Baum-Welch algorithm was used to estimate 
hidden Markov models
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Given observation sequences of PSA tests and biopsy 
results and initial model parameter estimates, the Baum-
Welch algorithm can find the model that locally 
maximizes the probability of the observation sequences

Study 
Data



Data: The Movember Foundation’s 
GAP3 Cohort

The Movember Foundation launched the Global Action Plan Prostate 
Cancer Active Surveillance (GAP3) to create a global database:

• includes 15,101 patients from 25 established AS cohorts worldwide

• records longitudinal observations of patients’ clinical and demographic 
characteristics

Reference: Bruinsma, Sophie M., Liying Zhang, Monique J. Roobol, Chris H. Bangma, Ewout W. Steyerberg, Daan Nieboer, 
Mieke Van Hemelrijck et al. "The Movember Foundation's GAP3 cohort: A profile of the largest global prostate cancer 
active surveillance database to date." BJU international 121, no. 5 (2018): 737-744.
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Hidden Markov Model (HMM)

• Time periods: annual times from the 
start to the end of AS 

• Initial distribution (at diagnosis) 
𝜙 = (𝜙1, 1 − 𝜙1, 0, 0, 0)

• Transition probability matrix: 
𝐴 = P 𝑠𝑡+1 𝑠𝑡

• Observation at time t: 

𝑂𝑡 = 𝑋𝑡, 𝑌𝑡 (PSA, Biopsy)
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Figure: State Transition Diagram of PCa in the context of AS.



Observation Probability Distributions of the HMM

 Biopsy observation probability matrix (discrete)

𝐵 = [𝑃(𝑦𝑡|𝑠𝑡)]

 PSA observation density functions (continuous)

𝑃 𝑥𝑡 𝑆𝑡 = 𝑖 = 

𝑚=1

𝑀

𝑐𝑖𝑚 × Norm(𝑥|𝜇𝑚, 𝜎𝑚
2 )
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Baum-Welch Algorithm for Parameter Estimation

Given the observation sequences

𝑂(1) = 𝑂1
1
, … , 𝑂𝑇1

1
, … , 𝑂 𝑁 = 𝑂1

𝑁
, … , 𝑂𝑇𝑁

𝑁
,

Baum-Welch algorithm, or equivalently the EM (expectation-maximization) algorithm estimates the 
model

𝜆 = 𝐴, 𝐵, 𝜙, 𝑐, 𝜇, 𝜎

that locally maximizes the likelihood function

𝑃 𝑂 𝜆 =ෑ

𝑘=1

𝑁

𝑃(𝑂(𝑘)|𝜆)

.Reference: Rabiner, Lawrence R. "A tutorial on hidden Markov models and selected applications in speech recognition." Proceedings of the IEEE 77, no. 2 
(1989): 257-286.
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Results of HMMs: Estimated Parameter
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Center Number of 

Patients

Mis-

classification 

Error at 

Diagnosis

Annual Grade 

Progression Rate

Biopsy

Sensitivity

(True Pos.)

Biopsy

Specificity

(True Neg.)

JH 1434 5.83% (1.74%) 6.91% (1.13%) 71.84% (0.43%) 99.72% (0.61%)

UCSF 1644 17.9% (0.95%) 14.77% (0.85%) 74.14% (0.89%) 99.06% (0.80%)

U of T 1243 14.2% (1.83%) 11.06% (2.29%) 78.62% (0.69%) 99.45% (0.75%)

PRIAS 4700 8.51% (1.44%) 8.71% (1.30%) 81.60% (0.72%) 98.96% (0.95%)

Table: Estimated Parameters (and bootstrapped standard errors) by the HMMs for Different Cohorts



Partially Observable Markov Decision Process 
(POMDP)

• Objective: to find the best biopsy strategy that balances 

the harm with the benefit of early detection

• Decision Epochs: every year

• Actions: PSA test only (No biopsy),  PSA test and Biopsy

• Hidden States: Low-Risk Cancer, High-Risk Cancer

• Transition Probability Matrix: 𝑃

• Observations: PSA, Biopsy

• Biopsy Observation Probability Matrix: B

• PSA Observation Probability Matrix: Q
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These elements in the POMDP 
model come from the HMM

These elements define the 
decision process and goal



POMDP Cost Function

Cost Function (negative reward): the cost function 𝑟𝑖𝑦
𝑎 depends on the current state 𝑖, action 𝑎, and 

biopsy observation 𝑦:

Note: 

• Set 𝜃, 𝜂 ∈ −1, 0 , 𝜃 + 𝜂 = −1, i.e. give one unit of penalty for the worst case (both late detection and biopsy 
burden); 

• A choice of (𝜃, 𝜂) can be interpreted as: 𝜃 years of late detection is treated as bad as the harm from 𝜂 numbers of 
biopsies;

• Changing the values of 𝜃 and 𝜂 allows trade off between two events according to patients’ preference.
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𝜃: cost of late detection

𝜂: cost of biopsy burden

Both late detection and 
biopsy burden



The Optimal Value Function

• Belief in high-risk cancer state
𝜋𝑡 ≔ 𝑃 𝑆𝑡 = High Risk , ∀𝑡

• Optimal value function
𝑉𝑡 𝜋

𝑡 ≔ max
𝑎𝑡

E σ𝑚=𝑡
End Reward𝑚 𝜋𝑡, 𝑎𝑡 , ∀𝜋

𝑡, ∀𝑡

• Optimal equation

𝑉𝑡 𝜋
𝑡 = max

𝑎𝑡
𝜋𝑡𝑟𝑎𝑡 + 

𝑜𝑡∈𝑂

𝑃 𝑜𝑡 𝜋
𝑡, 𝑎𝑡 𝑉𝑡+1 𝑈 𝜋𝑡 𝑎𝑡, 𝑜𝑡 , ∀𝜋𝑡, ∀𝑡

where 𝑈(𝜋𝑡|𝑎𝑡, 𝑜𝑡) is the updated belief calculated by the Bayes formula

• Incremental pruning algorithm (with approximation) to solve the POMDP (Cassandra et al. (1997))
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Reference: Cassandra, A., Littman, M.L. and Zhang, N.L., 1997, August. Incremental pruning: A simple, fast, exact method for partially observable 
Markov decision processes. In Proceedings of the Thirteenth conference on Uncertainty in artificial intelligence (pp. 54-61). 

Choose the best action

Immediate Reward at current time 

“Value to go” in the future time



The Optimal Strategy

For a patient at time 𝑡, with the prior belief 𝜋𝑡−1, ∀𝑡:

1. Perform a PSA test, receive the PSA observation: PSAt

2. Update his belief of being in high-risk cancer state: 

𝜋𝑡 = 𝑃(𝑆𝑡 = High Risk|𝜋𝑡−1, PSA𝑡)

3. Choose the optimal action given by: 

𝑎𝑡
∗ 𝜋𝑡 = argmax

𝑎𝑡
𝜋𝑡𝑟𝑎𝑡 + 

𝑜𝑡∈𝑂

𝑃 𝑜𝑡 𝜋
𝑡, 𝑎𝑡 𝑉𝑡+1 𝑈 𝜋𝑡 𝑎𝑡, 𝑜𝑡
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Results: Optimal Value at Age 50 in JH Study
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Figure: The optimal value functions at age 50 of the JH hospital’s POMDP models 
for θ = -0.5

• The optimal value function is the 
maximum of many linear 
functions

• Setting 𝜃 = 𝜂 = −0.5 weights 
equally on late detection and 
biopsy burden

• The optimal policy is a threshold-
based policy: if the belief of high-
risk cancer state exceeds the 
threshold, then do biopsy



Results: Thresholds vs. Age
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Figure 4: The relationship between the high-risk state belief thresholds for the biopsy 
and age for the optimal policies solved by the JH hospital’s POMDP models.

• The threshold of the optimal 
policy depends on the value of 
𝜃 and 𝜂

• The threshold varies little at 
early ages

• The threshold increases at older 
ages because years to 
recommended stopping time 
(75 year) for surveillance 
decrease



Comparisons with Current Policies in JH
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Figure: Comparisons of late detection and number of biopsies among the current policies and 
the optimal policies solved by the POMDP models in the JH’s cohort if diagnosed at age 50.

• The current recommended 
policies (JH, UCSF, PRIAS) are 
dominated by the optimal 
policies from the POMDP 
model

• Strategies vary significantly on 
the basis of the tradeoff 
between competing goals of 

1) minimizing harm from 
biopsies 

2) minimizing time to 
detection of high risk 
cancer 



Conclusions

• We demonstrate a data-driven optimization framework for active 
surveillance of prostate cancer, which can be applied to other 
healthcare applications with hidden states

• Current static policies are close to Pareto-optimal, but there is no 
single optimal strategy due to the trade off between competing 
criteria

• The optimal belief threshold for triggering a biopsy depends both on 
patient’s preference and age
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Opportunities for Future Research

• Robust optimal strategy given the estimated standard error 
of the model parameters

• The best single strategy that works well for all different 
cohorts

• Online learning of the natural history of cancer as well as the 
optimal strategy at the time of collecting new data
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Simulation & Validation: PSA Density
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Figure 3: Comparison of the observed and estimated PSA density by HMM in JH hospital



Simulation & Validation: detection rates are 
consistent
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The comparisons of observed and simulated 

detection rates at each biopsy time for 

different cohorts. The detection rates at each 

biopsy time were calculated as the number 

of patients detected as high-grade cancer by 

the biopsy divided by the total number of 

patients who did this biopsy. All observed 

biopsy detection rates fell into the 95% CIs 

of the simulated detection rates.



The Sequence of Operations in the POMDP 
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Figure 2: The sequence of operations



Hidden Markov Model (Cont.)

Figure 2: Bayesian Network Representation of the HMM 
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Trans. Trans. Trans.



Multiple Types of Observations

• Under the Bayesian Network described by Figure 2, the following conditional independence holds

𝑃 𝑂𝑡 𝑆𝑡 = 𝑃 𝑋𝑡, 𝑌𝑡 𝑆𝑡 = 𝑃 𝑋𝑡 𝑆𝑡 𝑃 𝑌𝑡 𝑆𝑡 , ∀𝑡

 For biopsy (discrete observation of positive or negative): observation probability matrix 

𝐵𝑡 = [𝑝(𝑦𝑡|𝑠𝑡)]

 For log-PSA measurement (continuous value): assume a finite (𝑀) mixture of Gaussian densities:

𝑃 𝑥𝑡 𝑆𝑡 = 𝑖 = 

𝑚=1

𝑀

𝑐𝑖𝑚 × Norm(𝑥|𝜇𝑚, 𝜎𝑚
2 )

where 𝑐𝑖𝑚 is the mixture coefficient for the mth mixture in state 𝑖, and can be interpreted as the 
probability that the log-PSA observation in state 𝑖 was “drawn” from the mth mixture.
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Results of HMMs: Estimated PSA Distributions
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Table: Estimated PSA distribution by the HMMs in different cohorts

Range of PSA (ng/mL) < 4 [4, 10] >10

Johns Hopkins LR Cancer 37.54% 54.97% 7.49%

HR Cancer 31.16% 61.02% 7.82%

UCSF LR Cancer 23.15% 65.54% 11.31%

HR Cancer 22.53% 65.26% 12.21%

Toronto LR Cancer 45.73% 34.22% 20.05%

HR Cancer 33.12% 23.68% 43.20%

PRIAS LR Cancer 13.79% 74.84% 11.37%

HR Cancer 15.93% 72.05% 12.02%



Hidden Markov model simulation to evaluate 
AS strategies

• Percentage of patients with GS ≤6 at diagnosis = 90.22%

• Annual progression probability = 3.97%

• Sensitivity of biopsy = 61.03%, Specificity of biopsy = 98.62%

Simulated all AS biopsy strategies 210= 1,024 AS strategies
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Gleason score ≤ 6 

(Non-progression)

𝑃11

𝑃12

𝑃22 = 1

Gleason score ≥ 7

(Progression)



Low-risk
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• Favorable Cancer state:
• clinical stage ≤ T1c, PSA density ≤ 0.15, Gleason score ≤ 6, total positive core ≤ 2, single core positivity ≤ 50% 

• Recommend to stay in AS


