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Last time



Last time

Understanding the effectiveness of different visual 
channels / encodings.

Understanding where your viewer will look and what 
they want to do (tasks).

Visualizing as a reflex during analysis.



Systematic design via channel effectiveness

Data			   channels		  	   marks			   viewer

																	                 viewer’s 
																	                 reconstruction
																                 	 of the data

How well do these match, given the channel used?



Systematic design via channel effectiveness



Today



What I want to do today

Talk about:

Uncertainty visualization

Multivariate visualization (a bit)

Run through some examples (if time)



Uncertainty



What happens when we ignore uncertainty?







Alternatives...



Alternatives...

[Jonathan P Kastellec and Eduardo L Leoni. 2007. Using Graphs Instead 
of Tables in Political Science. Perspectives on politics 5, 4: 755–771]



Alternatives...

[Jonathan P Kastellec and Eduardo L Leoni. 2007. Using Graphs Instead 
of Tables in Political Science. Perspectives on politics 5, 4: 755–771]



How easy is it to ignore the uncertainty?

This contributes to dichotomania...



Dichotomania...



Predictions from last US presidential election
[http://wapo.st/2fCYvDW]

28% 15% 2%

http://wapo.st/2fCYvDW
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People are very good at ignoring uncertainty...

 



People are very good at ignoring uncertainty...

Especially when we provide bad 
uncertainty representations



Icon arrays in medical risk communication
[Figure from Fagerlin, Wang, Ubel. Reducing the influence of anecdotal reasoning on people’s health care decisions: 
Is a picture worth a thousand statistics? Medical Decision Making 2005; 25:398–405] 

Frequency framing or discrete outcome visualization

McGill ranked visual perception tasks by their accuracy.10,42

Accuracy was excellent when judging positions or lengths
against a common scale (such as heights of bars of a bar
graph); good when judging angles (such as size of slices in
a pie chart) and slopes (such as slopes of a line graph); fair
when judging areas (such as circles); and poor when
judging volumes or color and gray-scale densities.10

3 Numerical format: Performing mathematical calculations
such as converting from ratios to percentages is a learned
skill; ability to perform such tasks varies with education,
health literacy, and numeracy.6,7,43 A probability of 6 in
100 is formally equivalent to both 6% and 0.06, but the
different formats strongly affect reasoning. For example,
with ratios, problem-solving ability and comprehension
are worse when the denominators are different than when
they are the same: it is harder to compare and calculate
with the pair of numbers “1 in 250” and “1 in 1000” than
it is with “4 in 1000” and “1 in 1000”.5,44,45 Ratios with the
same denominator have been called “natural frequen-
cies.”5,44,45 In a study in outpatient clinics, only 56% could
identify the larger of two risks when they were written in
the “1-in-x” format.46 Complex-looking ratios such as
513/570 are more demanding to process than equivalent
but simpler ones (such as 9/10) or decimals (e.g., 0.90), as
shown by preference reversals with different formats.47

A discussion of more complex graphical perception tasks,
such as integrating information from multiple sources,
would require attention to more complex theories.12 How-
ever, most risk graphics involve relatively simple tasks such
as providing information about an individual risk, compar-
ing several risks, or judging trends in risk over time.

Research Review
Icon Arrays
An icon array portrays a risk at the discrete level of
measurement as a group of individual icons, such as dots or
stick figures. In numerical reasoning, people tend to perform
better on probability problems when the data are presented
at the discrete level rather than as percentages or propor-
tions.44,45,48 Slovic et al review evidence that presenting
information in terms of individuals can produce mental
imagery with strong affective elements.9

An icon display reduced the influence of vivid text anec-
dotes in a study of choices of medical treatment (Fig. 1).49 In
this study, people were asked to imagine having angina and
being offered more successful (75% success rate) but more
arduous bypass surgery, or less successful (50% success rate)
but less arduous balloon angioplasty. They also read anec-
dotes about patients who had had the procedures. The
number of anecdotes describing success strongly affected
participants’ choices. When the proportion of successes in
the anecdotes was the same as the treatments’ success rates
(for example, when 3 of the 4 bypass stories described a
treatment success), respondents became more likely to
choose the more successful alternative (bypass). When one
anecdote described success and one a failure, most respon-
dents chose the less arduous treatment (angioplasty). The
anecdote effect was significantly smaller when respondents
saw icon displays depicting the two treatments’ success
rates.49 The icon array showed the part-to-whole relation-
ship and the square icons were touching, so the display

might have been visually processed as areas rather than as
discrete icons.

In a focus group of women, participants preferred icon
arrays with smaller denominators because they seemed
simpler but also tended to think that graphics with larger
denominators portrayed risks as smaller.37 The findings are
not consistent with the common ratio-bias effect, in which
risks described as ratios of small numbers are considered
smaller than numerically equivalent risks described with
large numbers (e.g., 1 in 20 is considered less likely than 10
in 200).50 In another focus group study with low-income
women, participants preferred seeing an individualized risk
estimate depicted as a bar chart with an ordinal scale (low,
average, or high risk) rather than as an icon array or a
percentage, and rather than a bar chart showing a series of
relative risks for women in different risk categories.39

Fuller et al. used several tasks to assess how elderly patients
interpreted discrete icon displays.51 The patients could
match percentages to icon arrays displaying different pro-
portions (70% to 98% accuracy for different tasks). They
were less accurate when marking the graph to show prob-
abilities (either ratios with different denominators [38% to
79% accuracy] or percentages [51% to 98% accuracy]). The
authors did not assess whether the graphs were successful in
conveying the personal applicability of the risk. A short

F i g u r e 1. Part-to-whole icon array with sequential ar-
rangement. Proportions are easy to judge in this icon array
because the part-to-whole information is available visually.
Because the square icons are arranged as a block and are
touching each other, it is possible that they are visually
processed as areas rather than as discrete units. From
Fagerlin A, Wang C, Ubel PA. Reducing the influence of
anecdotal reasoning on people’s health care decisions: Is a
picture worth a thousand statistics? Med Decis Making
2005;25:398–405. Copyright 2005 by Sage Publications. Re-
printed by permission of Sage Publications, Inc.
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Accuracy was excellent when judging positions or lengths
against a common scale (such as heights of bars of a bar
graph); good when judging angles (such as size of slices in
a pie chart) and slopes (such as slopes of a line graph); fair
when judging areas (such as circles); and poor when
judging volumes or color and gray-scale densities.10

3 Numerical format: Performing mathematical calculations
such as converting from ratios to percentages is a learned
skill; ability to perform such tasks varies with education,
health literacy, and numeracy.6,7,43 A probability of 6 in
100 is formally equivalent to both 6% and 0.06, but the
different formats strongly affect reasoning. For example,
with ratios, problem-solving ability and comprehension
are worse when the denominators are different than when
they are the same: it is harder to compare and calculate
with the pair of numbers “1 in 250” and “1 in 1000” than
it is with “4 in 1000” and “1 in 1000”.5,44,45 Ratios with the
same denominator have been called “natural frequen-
cies.”5,44,45 In a study in outpatient clinics, only 56% could
identify the larger of two risks when they were written in
the “1-in-x” format.46 Complex-looking ratios such as
513/570 are more demanding to process than equivalent
but simpler ones (such as 9/10) or decimals (e.g., 0.90), as
shown by preference reversals with different formats.47

A discussion of more complex graphical perception tasks,
such as integrating information from multiple sources,
would require attention to more complex theories.12 How-
ever, most risk graphics involve relatively simple tasks such
as providing information about an individual risk, compar-
ing several risks, or judging trends in risk over time.

Research Review
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An icon array portrays a risk at the discrete level of
measurement as a group of individual icons, such as dots or
stick figures. In numerical reasoning, people tend to perform
better on probability problems when the data are presented
at the discrete level rather than as percentages or propor-
tions.44,45,48 Slovic et al review evidence that presenting
information in terms of individuals can produce mental
imagery with strong affective elements.9

An icon display reduced the influence of vivid text anec-
dotes in a study of choices of medical treatment (Fig. 1).49 In
this study, people were asked to imagine having angina and
being offered more successful (75% success rate) but more
arduous bypass surgery, or less successful (50% success rate)
but less arduous balloon angioplasty. They also read anec-
dotes about patients who had had the procedures. The
number of anecdotes describing success strongly affected
participants’ choices. When the proportion of successes in
the anecdotes was the same as the treatments’ success rates
(for example, when 3 of the 4 bypass stories described a
treatment success), respondents became more likely to
choose the more successful alternative (bypass). When one
anecdote described success and one a failure, most respon-
dents chose the less arduous treatment (angioplasty). The
anecdote effect was significantly smaller when respondents
saw icon displays depicting the two treatments’ success
rates.49 The icon array showed the part-to-whole relation-
ship and the square icons were touching, so the display

might have been visually processed as areas rather than as
discrete icons.

In a focus group of women, participants preferred icon
arrays with smaller denominators because they seemed
simpler but also tended to think that graphics with larger
denominators portrayed risks as smaller.37 The findings are
not consistent with the common ratio-bias effect, in which
risks described as ratios of small numbers are considered
smaller than numerically equivalent risks described with
large numbers (e.g., 1 in 20 is considered less likely than 10
in 200).50 In another focus group study with low-income
women, participants preferred seeing an individualized risk
estimate depicted as a bar chart with an ordinal scale (low,
average, or high risk) rather than as an icon array or a
percentage, and rather than a bar chart showing a series of
relative risks for women in different risk categories.39

Fuller et al. used several tasks to assess how elderly patients
interpreted discrete icon displays.51 The patients could
match percentages to icon arrays displaying different pro-
portions (70% to 98% accuracy for different tasks). They
were less accurate when marking the graph to show prob-
abilities (either ratios with different denominators [38% to
79% accuracy] or percentages [51% to 98% accuracy]). The
authors did not assess whether the graphs were successful in
conveying the personal applicability of the risk. A short

F i g u r e 1. Part-to-whole icon array with sequential ar-
rangement. Proportions are easy to judge in this icon array
because the part-to-whole information is available visually.
Because the square icons are arranged as a block and are
touching each other, it is possible that they are visually
processed as areas rather than as discrete units. From
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What is an icon array for a 
continuous distribution?



What is an icon array for a 
continuous distribution?

An example scenario...





Do I have time to get a coffee?
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Quantile dotplots
[Kay et al 2016, Fernandes et al 2018]

Better estimates, decisions with time

Variance decreases: 
Even worst performers improve

Good uncertainty displays are possible!



(Sidebar —
  Uncertainty: what am I talking about?)



For the purposes of the first half of this talk...

I am largely adopting a Bayesian view of uncertainty

Put another way: uncertainty is probability



	 Epistemic uncertainty			 



	 Epistemic uncertainty			   Aleatory uncertainty



(End sidebar —
  Back to uncertainty vis)



Other discrete outcome 
uncertainty visualizations...



Discrete outcome uncertainty visualization

McGill ranked visual perception tasks by their accuracy.10,42

Accuracy was excellent when judging positions or lengths
against a common scale (such as heights of bars of a bar
graph); good when judging angles (such as size of slices in
a pie chart) and slopes (such as slopes of a line graph); fair
when judging areas (such as circles); and poor when
judging volumes or color and gray-scale densities.10

3 Numerical format: Performing mathematical calculations
such as converting from ratios to percentages is a learned
skill; ability to perform such tasks varies with education,
health literacy, and numeracy.6,7,43 A probability of 6 in
100 is formally equivalent to both 6% and 0.06, but the
different formats strongly affect reasoning. For example,
with ratios, problem-solving ability and comprehension
are worse when the denominators are different than when
they are the same: it is harder to compare and calculate
with the pair of numbers “1 in 250” and “1 in 1000” than
it is with “4 in 1000” and “1 in 1000”.5,44,45 Ratios with the
same denominator have been called “natural frequen-
cies.”5,44,45 In a study in outpatient clinics, only 56% could
identify the larger of two risks when they were written in
the “1-in-x” format.46 Complex-looking ratios such as
513/570 are more demanding to process than equivalent
but simpler ones (such as 9/10) or decimals (e.g., 0.90), as
shown by preference reversals with different formats.47

A discussion of more complex graphical perception tasks,
such as integrating information from multiple sources,
would require attention to more complex theories.12 How-
ever, most risk graphics involve relatively simple tasks such
as providing information about an individual risk, compar-
ing several risks, or judging trends in risk over time.

Research Review
Icon Arrays
An icon array portrays a risk at the discrete level of
measurement as a group of individual icons, such as dots or
stick figures. In numerical reasoning, people tend to perform
better on probability problems when the data are presented
at the discrete level rather than as percentages or propor-
tions.44,45,48 Slovic et al review evidence that presenting
information in terms of individuals can produce mental
imagery with strong affective elements.9

An icon display reduced the influence of vivid text anec-
dotes in a study of choices of medical treatment (Fig. 1).49 In
this study, people were asked to imagine having angina and
being offered more successful (75% success rate) but more
arduous bypass surgery, or less successful (50% success rate)
but less arduous balloon angioplasty. They also read anec-
dotes about patients who had had the procedures. The
number of anecdotes describing success strongly affected
participants’ choices. When the proportion of successes in
the anecdotes was the same as the treatments’ success rates
(for example, when 3 of the 4 bypass stories described a
treatment success), respondents became more likely to
choose the more successful alternative (bypass). When one
anecdote described success and one a failure, most respon-
dents chose the less arduous treatment (angioplasty). The
anecdote effect was significantly smaller when respondents
saw icon displays depicting the two treatments’ success
rates.49 The icon array showed the part-to-whole relation-
ship and the square icons were touching, so the display

might have been visually processed as areas rather than as
discrete icons.

In a focus group of women, participants preferred icon
arrays with smaller denominators because they seemed
simpler but also tended to think that graphics with larger
denominators portrayed risks as smaller.37 The findings are
not consistent with the common ratio-bias effect, in which
risks described as ratios of small numbers are considered
smaller than numerically equivalent risks described with
large numbers (e.g., 1 in 20 is considered less likely than 10
in 200).50 In another focus group study with low-income
women, participants preferred seeing an individualized risk
estimate depicted as a bar chart with an ordinal scale (low,
average, or high risk) rather than as an icon array or a
percentage, and rather than a bar chart showing a series of
relative risks for women in different risk categories.39

Fuller et al. used several tasks to assess how elderly patients
interpreted discrete icon displays.51 The patients could
match percentages to icon arrays displaying different pro-
portions (70% to 98% accuracy for different tasks). They
were less accurate when marking the graph to show prob-
abilities (either ratios with different denominators [38% to
79% accuracy] or percentages [51% to 98% accuracy]). The
authors did not assess whether the graphs were successful in
conveying the personal applicability of the risk. A short

F i g u r e 1. Part-to-whole icon array with sequential ar-
rangement. Proportions are easy to judge in this icon array
because the part-to-whole information is available visually.
Because the square icons are arranged as a block and are
touching each other, it is possible that they are visually
processed as areas rather than as discrete units. From
Fagerlin A, Wang C, Ubel PA. Reducing the influence of
anecdotal reasoning on people’s health care decisions: Is a
picture worth a thousand statistics? Med Decis Making
2005;25:398–405. Copyright 2005 by Sage Publications. Re-
printed by permission of Sage Publications, Inc.
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a pie chart) and slopes (such as slopes of a line graph); fair
when judging areas (such as circles); and poor when
judging volumes or color and gray-scale densities.10

3 Numerical format: Performing mathematical calculations
such as converting from ratios to percentages is a learned
skill; ability to perform such tasks varies with education,
health literacy, and numeracy.6,7,43 A probability of 6 in
100 is formally equivalent to both 6% and 0.06, but the
different formats strongly affect reasoning. For example,
with ratios, problem-solving ability and comprehension
are worse when the denominators are different than when
they are the same: it is harder to compare and calculate
with the pair of numbers “1 in 250” and “1 in 1000” than
it is with “4 in 1000” and “1 in 1000”.5,44,45 Ratios with the
same denominator have been called “natural frequen-
cies.”5,44,45 In a study in outpatient clinics, only 56% could
identify the larger of two risks when they were written in
the “1-in-x” format.46 Complex-looking ratios such as
513/570 are more demanding to process than equivalent
but simpler ones (such as 9/10) or decimals (e.g., 0.90), as
shown by preference reversals with different formats.47

A discussion of more complex graphical perception tasks,
such as integrating information from multiple sources,
would require attention to more complex theories.12 How-
ever, most risk graphics involve relatively simple tasks such
as providing information about an individual risk, compar-
ing several risks, or judging trends in risk over time.
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Icon Arrays
An icon array portrays a risk at the discrete level of
measurement as a group of individual icons, such as dots or
stick figures. In numerical reasoning, people tend to perform
better on probability problems when the data are presented
at the discrete level rather than as percentages or propor-
tions.44,45,48 Slovic et al review evidence that presenting
information in terms of individuals can produce mental
imagery with strong affective elements.9

An icon display reduced the influence of vivid text anec-
dotes in a study of choices of medical treatment (Fig. 1).49 In
this study, people were asked to imagine having angina and
being offered more successful (75% success rate) but more
arduous bypass surgery, or less successful (50% success rate)
but less arduous balloon angioplasty. They also read anec-
dotes about patients who had had the procedures. The
number of anecdotes describing success strongly affected
participants’ choices. When the proportion of successes in
the anecdotes was the same as the treatments’ success rates
(for example, when 3 of the 4 bypass stories described a
treatment success), respondents became more likely to
choose the more successful alternative (bypass). When one
anecdote described success and one a failure, most respon-
dents chose the less arduous treatment (angioplasty). The
anecdote effect was significantly smaller when respondents
saw icon displays depicting the two treatments’ success
rates.49 The icon array showed the part-to-whole relation-
ship and the square icons were touching, so the display

might have been visually processed as areas rather than as
discrete icons.

In a focus group of women, participants preferred icon
arrays with smaller denominators because they seemed
simpler but also tended to think that graphics with larger
denominators portrayed risks as smaller.37 The findings are
not consistent with the common ratio-bias effect, in which
risks described as ratios of small numbers are considered
smaller than numerically equivalent risks described with
large numbers (e.g., 1 in 20 is considered less likely than 10
in 200).50 In another focus group study with low-income
women, participants preferred seeing an individualized risk
estimate depicted as a bar chart with an ordinal scale (low,
average, or high risk) rather than as an icon array or a
percentage, and rather than a bar chart showing a series of
relative risks for women in different risk categories.39

Fuller et al. used several tasks to assess how elderly patients
interpreted discrete icon displays.51 The patients could
match percentages to icon arrays displaying different pro-
portions (70% to 98% accuracy for different tasks). They
were less accurate when marking the graph to show prob-
abilities (either ratios with different denominators [38% to
79% accuracy] or percentages [51% to 98% accuracy]). The
authors did not assess whether the graphs were successful in
conveying the personal applicability of the risk. A short

F i g u r e 1. Part-to-whole icon array with sequential ar-
rangement. Proportions are easy to judge in this icon array
because the part-to-whole information is available visually.
Because the square icons are arranged as a block and are
touching each other, it is possible that they are visually
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Predictions from 2016 presidential election
[Justin H. Gross, Washington Post, http://wapo.st/2fCYvDW]
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FiveThirtyEight’s 2018 House forecast
[https://projects.fivethirtyeight.com/2018-midterm-election-forecast/house/]
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Other discrete outcome  
uncertainty visualizations...



Hurricane error cones
[Cox, House, Lindell. Visualizing Uncertainty in Predicted Hurricane Tracks. 
International Journal for Uncertainty Quantification, 3(2), 143–156, 2013]

Visualizing Uncertainty in Predicted Hurricane Tracks 153

and a 5 indicating that they strongly preferred the error cone. They were also asked for open-ended comments on the
study.

5. RESULTS

Figure 10 shows each of the six cases presented to the experiment participants, in their order of presentation, with the
top row of each case showing the error cone view, and the bottom row showing our method. These examples were
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Case 4 Case 5 Case 6
FIG. 10: The six cases as shown to experiment participants.
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Deterministic construal errors
[Joslyn & LeClerc. Decisions With Uncertainty: The Glass Half Full. Current Directions in Psych. Science, 22(4), 2013]
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Fit line uncertainty



Fit line uncertainty



Fit line uncertainty
Hypothetical outcome plots 
(HOPs)

[Hullman, Resnick, Adar. Hypothetical Outcome Plots Outperform Error Bars and Violin Plots for Inferences about 
Reliability of Variable Ordering. PloS One, 10(11). 2015]






Hurricane location
[Liu et al, Uncertainty Visualization by Representative Sampling..., 2016]

this style of display is that glyphs carrying information, in
addition to position, can be placed at the location of each
sample without concern for occlusion. To demonstrate that
our proposed technique has great potential to support this
type of visualization, we created a direct ensemble display
by placing glyphs indicating predicted storm intensity at
each of the predicted locations. Fig. 11 shows two such dis-
plays at 36, and 48 hours into the prediction. These displays
are intended to show the most likely storm position, while
indicating that outliers are more and more likely as time
progresses into the prediction. Because we wanted to clearly
show outliers, we chose the WSE algorithm to obtain the
subsets used in this particular case.

We demonstrated these visualizations to meteorologists
at the NHC and one of their important critiques was that this
visualization did not have enough coverage of the area likely
to experience hurricane force winds. A second concern was
that individual elements of the ensemble are highly salient,
potentially misleading viewers into paying too much atten-
tion to certain glyphs instead of the overall distribution.

To address these concerns, we created an animated
visualization that continuously adds new ensemble mem-
bers to the display while slowly fading out glyphs that
have been on the screen for a while. Over time this allows
many more ensemble members to be displayed, without
creating clutter, and, since they are always fading away,

also deemphasizes any particular glyph. Within this visual-
ization, areas with a high concentration of samples tend to
be more opaque than those with low concentration. Thus,
more opacity indicates a higher level of certainty. This was
implemented by initially randomly selecting opacities for
all of the samples. Samples are divided into two groups,
one group with non-zero opacity that is on the display,
and one group with zero opacity that is not displayed.
Each time the opacity of a displayed sample is decreased
to zero, we pick a new sample from the zero opacity group
whose simplicial depth value is closest to that sample, and
display it at maximum opacity. This ensures that the distri-
bution at each time frame is as close to the distribution of
the full ensemble as possible. Fig. 12c shows a snapshot of
such a visualization.

Another critique from the NHC meteorologists was
that even though our glyphs depict a set of predicted
positions of the center of the storm annotated by storm
strength, they do not show the extent of the area poten-
tially affected by hurricane force winds. To address this
concern, we developed a visualization that uses circles
entered at the selected samples whose radii correspond
to predicted distance from the center at which 50 kn
winds are predicted. We employ the same pipeline used
for drawing strength glyphs to create a dynamically
updating display. A snapshot of this style of visualiza-
tion is shown in Fig. 12d.

We are confident that our approach can be easily imple-
mented to operate in real time. We did not conduct timing
studies, since our research software was not fully integrated
and used Matlab for some calculations. Even with this
approach, all computations are done in under a second.

Fig. 10. Simplicial depth field displays over time, comparing Liu et al.’s
ellipse fitting [7] with interpolation from an optimal subset.

Fig. 11. Glyph displays of the prediction, over time, using ensemble sub-
sets from the WSE algorithm.

Fig. 12. The four visualization styles studied in the cognitive experiment. The blue dot indicates the position of an oil rig platform.
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Animation helps people experience uncertainty

This can be very powerful...



Income of black boys from wealthy families
[https://nyti.ms/2GGpFZw]
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Plenty of options just for point estimates...



Uncertainty in point estimates...
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A. 95% interval. A commonly-used interval. 
In NHST, if the null hypothesis is outside this 
interval, p < 0.05.

B. Almost-95% interval (here, 92%). McEl-
reath recommmends using an interval similar 
to 95% but without a direct correspondence 
to p < 0.05 in an attempt to avoid dichto-
mous thinking (he suggests 89%, but the 
choice is arbitrary).

C. Small interval (here, 66%). Gelman rec-
commends small intervals (such as 50%) as 
they are easier to validate in model check-
ing. I think they may also avoid the round-
ing-to-100% problem of 95% intervals.

D. Multiple intervals (here, 95% + 66%). 
Perhaps multiple intervals will mitigate the 
interpretation of one as “canonical”. Some 
statistical packages (e.g. Stan) take this 
approach.

E. 100% interval (here with the 95%). Per-
haps showing the 100% interval could miti-
gate the rounding-to-100% problem, by 
emphasizing that the 95% is not the 100% 
interval.

F. Density. Proposed with various encodings 
(height, width, lightness), showing the sam-
pling distribution (or Bayesian posterior) 
without speci�c interval may mitigate 
against dichotmous thinking.

G. Density+interval (here, 95%). Showing 
just density loses some precision in reading 
the point estimate and an interval, so a 
compromise might add these back in.

H. Small quantile dotplot (here, 20). A 
quantile dotplot with a small number of 
quantiles allows precise estimation of many 
intervals, and may improve understanding of 
uncertainty through hypothetical outcomes.

I. Large quantile dotplot (here, 100). A 
small dotplot loses some resolution, particu-
larly in the tails, but a larger dotplot loses 
precise estimation by counting in the body.

Density
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[Sidebar: distribution visualizations]
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Violin plot				    (or similar: “bean plot”)
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(Wilkinson) dotplot	 (or similar: “beeswarm”)
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Cumulative distribution function (CDF)

(Wilkinson) dotplot	 (or similar: “beeswarm”)
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Cartographic uncertainty



Just map to another visual channel, right?
[Lucchesi & Wikle. Visualizing uncertainty in areal data with bivariate choropleth maps, map pixelation and glyph 
rotation. Stat, 292–302, 2017]
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Just map to another visual channel, right?
[Lucchesi & Wikle. Visualizing uncertainty in areal data with bivariate choropleth maps, map pixelation and glyph 
rotation. Stat, 292–302, 2017]

Very abstract…



I'm not a map vis person...























More examples...



http://mjskay.github.io/tidybayes/ https://github.com/mjskay/uncertainty-examples

http://mjskay.github.io/tidybayes/
https://github.com/mjskay/uncertainty-examples


Let’s step back from  
strictly probabilistic uncertainty
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Epistemic uncertainty		     Aleatory uncertainty	



Epistemic uncertainty		     Aleatory uncertainty		  Ontological uncertainty

																	                   How well does this
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(multiverse analysis) [Steegen, Tuerlinckz, Gelman, Vanpaemel 2014]
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[Steegen, Tuerlinckz, Gelman, 
Vanpaemel. Increasing 
Transparency Through a 
Multiverse Analysis. Perspectives 
on Psychological Science, 2016]

708 Steegen et al.
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Fig. 2. Visualization of the multiverse of p values of the Fertility × Relationship status interaction on religiosity (Panel A), on social political attitudes 
(Panel B), on voting preferences (Panel C), and on donation preferences (Panel D) in Study 2, showing the dependence of the results on data  
processing choices. See Table 1 for an explanation of the acronyms.

and should make a researcher hesitant to trust the single 
data set finding. The effect of fertility on religion seems 
too sensitive to arbitrary choices and thus too fragile to 
be taken seriously.

For most other variables, there was considerable ambi-
guity: The interaction seemed to be significant across 
about half of the arbitrary choice combinations. In these 
cases, the conclusion on the effect of fertility strongly 
depends on the evaluation of the different processing 
options. Both the authors performing the multiverse analy-
sis and the readers of the research can construct argu-
ments in favor or against certain choices, and the validity 
of these arguments will help drawing the conclusion. For 
example, if additional information suggests that the fifth 
option of assessing fertility is clearly superior, then Panel A 

of Figure 2 indicates that there is little evidence for an 
effect of fertility on religiosity in Study 2. On the other 
hand, if additional information suggests that the second 
option of assessing fertility is clearly superior, then most 
choice combinations lead to a significant interaction 
effect.

If no strong arguments can be made for certain 
choices, we are left with many branches of the multiverse 
that have large p values. In these cases, the only reason-
able conclusion on the effect of fertility is that there is 
considerable scientific uncertainty. One should reserve 
judgment and acknowledge that the data are not strong 
enough to draw a conclusion on the effect of fertility. The 
real conclusion of the multiverse analysis is that there is 
a gaping hole in theory or in measurement, and that 
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Explorable Multiverse Analysis Reports
[Dragicevic, Jansen, Sarma, Kay, and Chevalier. Increasing the Transparency of Research Papers with Explorable 
Multiverse Analyses. CHI 2019: https://explorablemultiverse.github.io/]

https://explorablemultiverse.github.io/


Explorable Multiverse Analysis Reports
[Dragicevic, Jansen, Sarma, Kay, and Chevalier. Increasing the Transparency of Research Papers with Explorable 
Multiverse Analyses. CHI 2019: https://explorablemultiverse.github.io/]

We need better ways to acknowledge specification 
uncertainty and have a conversation about it through 
the literature

https://explorablemultiverse.github.io/


Okay, but back to elections...



New York Times Election Needle
[https://www.nytimes.com/interactive/2016/11/08/us/elections/trump-clinton-election-night-live.html]

https://www.nytimes.com/interactive/2016/11/08/us/elections/trump-clinton-election-night-live.html










But shouldn’t anxiety
be proportional to
uncertainty?



Uncertainty visualization as a moral imperative

We should…

present well-calibrated uncertainty
that cannot be ignored 
in ways people can actually understand



Multivariate visualization



Multivariate data

Examples of useful techniques for multivariate data:

	 1.	Small multiples

	 2.	Scatterplot matrices

	 3.	Parallel coordinates



Small multiples



Value of small multiples

Reader-driven comparison

Micro-macro readings, layering

High-level properties through
ensemble coding

Double use of position channel



SPLOM: Scatterplot matrix
[https://bl.ocks.org/mbostock/4063663]

Special case of small multiples
variable -> column (x position)
variable -> row (y position)

Each panel:
column variable -> x position
row variable -> y position

https://bl.ocks.org/mbostock/4063663


SPLOMs don’t scale well with many variables

Scatterplot is best 
representation for
correlation...



SPLOMs don’t scale well with many variables

Scatterplot is best 
representation for
correlation...

But SPLOMs don’t 
always scale



SPLOM alternative: parallel coordinates
[https://bl.ocks.org/jasondavies/1341281]

Scales better

But not best
representation

Usually needs
interactivity

https://bl.ocks.org/jasondavies/1341281


SPLOM alternative: parallel coordinates
[https://bl.ocks.org/jasondavies/1341281]

Scales better

But not best
representation

Usually needs
interactivity

https://bl.ocks.org/jasondavies/1341281


Multivariate visualization

Small multiples help a lot (double position encoding!)

SPLOMs great for correlation

Parallel coordinates: trade effectiveness for scale

Other approaches: dimensionality reduction, then vis



Examples / exercises



Prediction and memory

[https://nyti.ms/2jX8zue]

https://nyti.ms/2jX8zue


Small multiples versus animation

[https://excelcharts.com/animation-small-multiples-growth-walmart-excel-edition/]

https://excelcharts.com/animation-small-multiples-growth-walmart-excel-edition/


Measles vaccination

https://tinyurl.com/mjd5sv9

https://tinyurl.com/mjd5sv9


What’s wrong here?



Group activity

What are the 
variables / types?

Channels / 
encodings?

Marks?

Is this effective?



[https://fivethirtyeight.

com/features/science-isnt-

broken/]

https://fivethirtyeight.com/features/science-isnt-broken/
https://fivethirtyeight.com/features/science-isnt-broken/
https://fivethirtyeight.com/features/science-isnt-broken/


Evolution of bacteria

https://vimeo.com/180908160

https://vimeo.com/180908160


Hyberbolic trees
[https://youtu.be/fhbQy_NCwWI]

https://youtu.be/fhbQy_NCwWI


Document visualization: sentence length

																			                   [Keim & Oelke ’07]



Node linearization
[McGuffin, Simple Algorithms for Network Visualization: A Tutorial, 2012]



Node linearization
[McGuffin, Simple Algorithms for Network Visualization: A Tutorial, 2012]



Node linearization
[McGuffin, Simple Algorithms for Network Visualization: A Tutorial, 2012]



Node linearization
[McGuffin]



Node linearization: Barycentric order
[McGuffin]



Node linearization: Barycentric order
[McGuffin]



Node linearization: Barycentric order
[McGuffin]



(also node-link + matrix example: MatLink)
[McGuffin]



NodeTrix: the other way around
Riche et al, http://www.aviz.fr/Research/Nodetrix, https://www.youtube.com/watch?v=7G3MxyOcHKQ

http://www.aviz.fr/Research/Nodetrix
https://www.youtube.com/watch?v=7G3MxyOcHKQ


Small multiples

[http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/]

http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/

