Information Visualization II

UM Big Data Summer Institute 2019

Matthew Kay Assistant Professor School of Information & Computer Science and Engineering University of Michigan

Last time

Understanding the **effectiveness** of different visual channels / encodings.

Understanding where your viewer will look and what they want to do (tasks).

Visualizing as a reflex during analysis.

Systematic design via channel effectiveness

How well do these match, given the channel used?

Systematic design via channel effectiveness

Quantitative

What I want to do today

Talk about:

Uncertainty visualization

Multivariate visualization (a bit)

Run through some examples (if time)

Uncertainty

What happens when we ignore uncertainty?

A mixed-design ANOVA with sex of face (male, female) as a within-subjects factor and self-rated attractiveness (low, average, high) and oral contraceptive use (true, false) as between-subjects factors revealed a main effect of sex of face, F(1, 1276) = 1372, p < .001, $\eta_p^2 = .52$. This was qualified by interactions between sex of face and SRA, F(2, 1276) = 6.90, p = .001, $\eta_p^2 = .011$, and between sex of face and oral contraceptive use, F(1, 1276) = 5.02, p = .025, $\eta_p^2 = .004$. The predicted interaction among sex of face, SRA and oral contraceptive use was not significant, F(2, 1276) = 0.06, p = .94, $\eta_p^2 < .001$. All other main effects and interactions were non-significant and irrelevant to our hypotheses, all $F \le 0.94$, $p \ge .39$, $\eta_p^2 \le .001$.

A mixed-design ANOV- with sex of face (male, female) as a with roubjects factor and self-rated attractiveness (low overage, high) and oral contract prive use (true, false) as between-subjects factors revealed main effect of seven ace, F(1, 1276) = 1372, p < .001, $\eta_p^2 = .52$. This was qualified up interaction between sex of face and SRA, F(2, 1276) = 6.90, p = .001, $\eta_p^2 = .011$, and one seen sex of face and oral contraceptive use, F(1, 1276) = 5.02, p = .025, $\eta_p^2 = .011$ and one redicted interaction among sex of face, SRA and oral contraceptive up to as not significant and irrelevant to our hypotheses, all $F \le 0.90$, $p \ge .39$, $\eta_p^2 \le .001$.

Alternatives...

Variable	Coefficient (Standard Error)
Constant	.41 (.93)
Countries	
Argentina	1.31 (.33)** ^{B,M}
Chile	.93 (.32)** ^{B,M}
Colombia	1.46 (.32)** ^{B,M}
Mexico	.07 (.32) ^{A,CH,CO,V}
Venezuela	.96 (.37)** ^{B,M}
Threat	
Retrospective egocentric economic perceptions	.20 (.13)
Prospective egocentric economic perceptions	.22 (.12)#
Retrospective sociotropic economic perceptions	21 (.12)#
Prospective sociotropic economic perceptions	32 (.12)*
Ideological distance from president	27 (.07)**
Ideology	23 (07)**
Individual Differences	.20 (.07)
Ane	00 (01)
Female	- 03 (21)
Education	13 (14)
Academic Sector	15 (.29)
Business Sector	31 (25)
Government Sector	- 10 (.27)
B^2	.15
Adjusted R ²	.12
N	500

**p < .01, *p < .05, *p < .10 (twotailed)

Alternatives...

Variable	Coefficient (Standard Error)	
Constant	.41 (.93)	
Countries		
Argentina	1.31 (.33)** ^{B,M}	
Chile	.93 (.32)** ^{B,M}	
Colombia	1.46 (.32)** ^{B,M}	
Mexico	.07 (.32) ^{A,CH,CO,V}	
Venezuela	.96 (.37)** ^{B,M}	-
Threat		R
Retrospective egocentric economic perceptions	.20 (.13)	
Prospective egocentric economic perceptions	.22 (.12 ^{)#}	Re
Retrospective sociotropic economic perceptions	21 (.12 ^{)#}	
Prospective sociotropic economic perceptions	32 (.12)*	0
Ideological distance from president	27 (.07)**	
Ideology	23 (07)**	
Individual Differences	.20 (.07)	
Δαρ	00(01)	
Female	- 03 (21)	
Education	13 (14)	
Academic Sector	15 (29)	
Business Sector	31 (25)	
Government Sector	10 (.27)	
B^2	.15	
Adjusted R ²	.12	
N	500	

2

[Jonathan P Kastellec and Eduardo L Leoni. 2007. Using Graphs Instead of Tables in Political Science. Perspectives on politics 5, 4: 755–771]

Alternatives...

Variable	Coefficient (Standard Error)
Constant	.41 (.93)
Countries	
Argentina	1.31 (.33)** ^{B,M}
Chile	.93 (.32)** ^{B,M}
Colombia	1.46 (.32)** ^{B,M}
Mexico	.07 (.32) ^{A,CH,CO,V}
Venezuela	.96 (.37)** ^{B,M}
hreat	
Retrospective egocentric economic perceptions	.20 (.13)
Prospective egocentric economic perceptions	.22 (.12)#
Retrospective sociotropic economic perceptions	21 (.12 ^{)#}
Prospective sociotropic economic perceptions	32 (.12)*
Ideological distance from president	27 (.07)**
Ideology	23 (07)**
dividual Differences	.20 (.07)
Age	00(01)
Female	03 (21)
Education	13 (14)
Academic Sector	15 (29)
Business Sector	31 (25)
Government Sector	- 10 (27)
2	15
diusted B ²	.12
V	500

0

2

 $2^{1.5} \times$

[Jonathan P Kastellec and Eduardo L Leoni. 2007. Using Graphs Instead of Tables in Political Science. Perspectives on politics 5, 4: 755–771]

How easy is it to ignore the uncertainty?

Variable	(Standard Error)	
Constant	.41 (.93)	
Countries		
Argentina	1.31 (.33)** ^{B,M}	
Chile	.93 (.32)** ^{B,M}	
Colombia	1.46 (.32)** ^{B,M}	
Mexico	.07 (.32) ^{A,CH,CO,V}	
Venezuela	.96 (.37)** ^{B,M}	
Threat		
Retrospective egocentric economic perceptions	.20 (.13)	
Prospective egocentric economic perceptions	.22 (.12)#	
Retrospective sociotropic economic perceptions	21 (.12 ^{)#}	
Prospective sociotropic economic perceptions	32 (.12)*	

Chile-Colombia-Mexico-Venezuela-Retrospective egocentric-Prospective egocentric-Retrospective sociotropic-Prospective sociotropic-Distance from president-

This contributes to **dichotomania**...

Dichotomania...

Predictions from last US presidential election

[http://wapo.st/2fCYvDW]

FiveThirtyEight: Trump's Chances

NYT Upshot: Trump's Chances

HuffPo Pollster: Trump's Chances

28%

15%

2%

Predictions from last presidential election

[http://wapo.st/2fCYvDW]

FiveThirtyEight: Trump's Chances

NYT Upshot: Trump's Chances

HuffPo Pollster: Trump's Chances

20 cases in 1,000

286 cases in 1,000

150 cases in 1,000

People are very good at ignoring uncertainty...

People are very good at ignoring uncertainty...

Especially when we provide bad uncertainty representations

Icon arrays in medical risk communication

[Figure from Fagerlin, Wang, Ubel. Reducing the influence of anecdotal reasoning on people's health care decisions: Is a picture worth a thousand statistics? Medical Decision Making 2005; 25:398–405]

Success Rate of Balloon Angioplasty

Successfully cured of angina

Not successfully cured of angina

Successfully cured
of angina

8

Frequency framing or discrete outcome visualization

What is an icon array for a continuous distribution?

What is an icon array for a continuous distribution?

An example scenario...

Do I have time to get a coffee?

Quantile dotplots

[Kay et al 2016, Fernandes et al 2018]

Better estimates, decisions with time

Variance decreases: Even worst performers improve

Good uncertainty displays are possible!

(Sidebar — Uncertainty: what am I talking about?)

For the purposes of the first half of this talk...

I am largely adopting a **Bayesian** view of uncertainty

Put another way: uncertainty is probability

Epistemic uncertainty

Epistemic uncertainty

Aleatory uncertainty

(End sidebar — Back to uncertainty vis) Other discrete outcome uncertainty visualizations...

Discrete outcome uncertainty visualization

Success Rate of Balloon Angioplasty

Successfully cured of angina

•

Not successfully cured of angina

Predictions from 2016 presidential election

[Justin H. Gross, Washington Post, http://wapo.st/2fCYvDW]

FiveThirtyEight	NYT Upshot	HuffPo Pollster
28%	15%	2%

Predictions from 2016 presidential election

[Justin H. Gross, Washington Post, http://wapo.st/2fCYvDW]

FiveThirtyEight's 2018 House forecast

[https://projects.fivethirtyeight.com/2018-midterm-election-forecast/house/]

FiveThirtyEight's 2018 House forecast

[https://projects.fivethirtyeight.com/2018-midterm-election-forecast/house/]

FiveThirtyEight's 2018 House forecast

[https://projects.fivethirtyeight.com/2018-midterm-election-forecast/house/]

Other discrete outcome uncertainty visualizations...

Hurricane error cones

[Cox, House, Lindell. Visualizing Uncertainty in Predicted Hurricane Tracks. International Journal for Uncertainty Quantification, 3(2), 143–156, 2013]

Deterministic construal errors

[Joslyn & LeClerc. Decisions With Uncertainty: The Glass Half Full. Current Directions in Psych. Science, 22(4), 2013]

Hurricane error cones

[Cox, House, Lindell. Visualizing Uncertainty in Predicted Hurricane Tracks. International Journal for Uncertainty Quantification, 3(2), 143–156, 2013]

Fit line uncertainty

Fit line uncertainty

Fit line uncertainty

Hypothetical outcome plots (HOPs)

[Hullman, Resnick, Adar. Hypothetical Outcome Plots Outperform Error Bars and Violin Plots for Inferences about Reliability of Variable Ordering. PloS One, 10(11). 2015]

Hurricane location

[Liu et al, Uncertainty Visualization by Representative Sampling..., 2016]

Hurricane location

[Liu et al, Uncertainty Visualization by Representative Sampling..., 2016]

Animation helps people experience uncertainty

This can be very powerful...

Income of black boys from wealthy families

https://nyti.ms/2GGpFZw

Adult outcomes reflect household incomes in 2014 and 2015.

Plenty of options just for point estimates...

[Sidebar: distribution visualizations]

Cartographic uncertainty

Just map to another visual channel, right?

[Lucchesi & Wikle. Visualizing uncertainty in areal data with bivariate choropleth maps, map pixelation and glyph rotation. Stat, 292–302, 2017]

Just map to another visual channel, right?

[Lucchesi & Wikle. Visualizing uncertainty in areal data with bivariate choropleth maps, map pixelation and glyph rotation. Stat, 292–302, 2017]

Just map to another visual channel, right?

[Lucchesi & Wikle. Visualizing uncertainty in areal data with bivariate choropleth maps, map pixelation and glyph rotation. Stat, 292–302, 2017]

Very abstract...

I'm not a map vis person...

y1	y2	уЗ	y4	y5	y6	у7	y1	y2	уЗ	у4	y5	y6	у7	
•						¥2							ý2	
	 					уз							εų	
· · ·		• • • •				у4							у4	corr
• **:	.:**:		, i i i i i			у5							Уб	
• * • •	.**.	· •	***	:\$2.		уб							уб	
			· · ·	· ;;; ;?		у7							у7	
• 5::	• \$7.			¥#	Q.	× × × × × ×							¥8	

More examples...

http://mjskay.github.io/tidybayes/

https://github.com/mjskay/uncertainty-examples

Let's step back from strictly probabilistic uncertainty

analysis data ------

Different choices for ... outlier removal

Different choices for ... outlier removal data transformation analysis data –

This is model/ specification uncertainty

Epistemic uncertainty

Aleatory uncertainty

Epistemic uncertainty

Aleatory uncertainty

Ontological uncertainty

How well does this describe reality?

(pre-registration)

(multiverse analysis) [Steegen, Tuerlinckz, Gelman, Vanpaemel 2014]

Religiosity (Study 2)

Social political attitudes

Voting preferences

		R1					R2					R3					
F1	F2	FB	F4	F5	F1	F2	FB	F4	F5	F1	F2	FB	F4	F5			
					Г					Г							
0	0	0	0.01	0	0.04	0.04	0.02	0.07	0.02	0.01	0.01	0	0.03	0.01	EC 1	ECL1	
0.11	0.14	0.01	0.08	0	0.38	0.6	0.19	0.38	0.16	0.22	0.37	0.07	0.2	0.05	EC 2		NMO
0.01	0.02	0	0 .03	0	0.03	0.05	0.01	0.08	0.03	0.01	0.02	0	0.04	0.01	EC 1	ECL2	
0.13	0.15	0.01	0.07	0	0.27	0.36	0.14	0.27	0.14	0.16	0.22	0.05	0.13	0.04	EC 2		
0.01	0.01	0	0	0.01	0.04	0.06	0.03	0.04	0.06	0.01	0.02	0.01	0.02	0.02	EC 1	ECL1	
0.05	0.03	0.01	0	0	0.19	0.22	0.08	0.09	0.12	0.08	0.09	0.03	0.03	0.03	EC 2		NMO
0.01	0.01	0	0	0.01	0.05	0.07	0.02	0.05	0.08	0.01	0.02	0.01	0.02	0.03	EC 1	ECL3	
0.08	0.04	0.01	0	0	0.22	0.25	0.06	0.14	0.15	0.11	0.11	0.02	0.04	0.04	EC 2		
0.11	0.13	0.03	0.08	0.02	0.05	0.09	0.05	0.07	0.08	0.04	0.06	0.02	0.05	0.03	EC 1	ECL1	
0.42	0.32	0.04	0.18	0	0.59	0.68	0.23	0.4	0.23	0.45	0.5	0.09	0.28	0.06	EC 2		
0.07	0.09	0.01	0.07	0.01	0.08	0.12	0.08	0.08	0.11	0.04	0.07	0.02	0.05	0.03	EC 1	ECL2	NMO:
0.28	0.28	0.02	0.18	0	0.47	0.54	0.16	0.37	0.19	0.31	0.38	0.05	0.25	0.04	EC 2		
0.08	0.1	0.02	0.04	0.01	0.11	0.14	80.0	0.14	0.19	0.06	0.09	0.03	0.07	0.06	EC 1	ECL3	
0.28	0.27	0.04	0.09	0	0.54	0.66	0.22	0.44	0.31	0.37	0.47	0.09	0.25	0.07	EC 2		

		RI					RZ					RЗ					
F1	F2	FB	F4	F5	F1	F2	FB	F4	F5	F1	F2	Fβ	F4	F5			
0	0	0	0	0	0.03	0.04	0.01	0.04	0.01	0.01	0.01	0	0.01	0	EC 1	ECL1	
0.07	0.1	0.01	0.06	0	0.19	0.33	0.09	0.35	0.14	0.1	0.18	0.03	0.17	0.04	EC 2		NM01
0.01	0.01	0	0 .01	0	0.03	0.04	0.01	0.05	0.01	0.01	0.01	0	0.02	0	EC 1	ECL2	
0.08	0.11	0.01	0.06	0	0.12	0.16	0.06	0.25	0.11	0.07	0.09	0.02	0.11	0.03	EC 2		
0.01	0.01	0	0	0.01	0.03	0.05	0.02	0.03	0.05	0.01	0.02	0	0.01	0.02	EC 1	ECL1	
0.03	0.02	0	0	0	0.07	0.09	0.03	0.05	0.06	0.03	0.04	0.01	0.02	0.01	EC 2		NM02
0.01	0.01	0	0	0.01	0.06	0.09	0.02	0.06	0.09	0.02	0.03	0.01	0.02	0.03	EC 1	ECL3	
0.08	0.05	0.02	0	0	0.16	0.19	0.04	0.1	0.1	0.08	0.08	0.02	0.03	0.03	EC 2		
0.08	0.17	0.02	0.06	0.01	0.03	0.08	0.02	0.04	0.04	0.02	0.07	0.01	0.03	0.01	EC 1	ECL1	
0.42	0.4	0.04	0.24	0.01	0.37	0.41	0.11	0.32	0.16	0.31	0.35	0.05	0.26	0.05	EC 2		
0.05	0.12	0.01	0.05	0.01	0.04	0.09	0.03	0.05	0.05	0.02	0.06	0.01	0.03	0.01	EC 1	ECL2	NM03
0.28	0.37	0.02	0.24	0.01	0.27	0.3	0.07	0.3	0.12	0.2	0.25	0.02	0.22	0.03	EC 2		
0.08	0.18	0.02	0.03	0.01	0.08	0.18	0.06	0.09	0.12	0.04	0.13	0.02	0.04	0.04	EC 1	ECL3	
0.37	0.44	0.07	0.14	0.01	0.48	0.56	0.19	0.41	0.27	0.37	0.47	0.09	0.26	0.08	EC 2		

Donation preferences

[Steegen, Tuerlinckz, Gelman, Vanpaemel. Increasing Transparency Through a Multiverse Analysis. Perspectives on Psychological Science, 2016]

Explorable Multiverse Analysis Reports

[Dragicevic, Jansen, Sarma, Kay, and Chevalier. Increasing the Transparency of Research Papers with Explorable Multiverse Analyses. CHI 2019: <u>https://explorablemultiverse.github.io/]</u>

each condition. Error bars are 95% t-based CIs.

We focus our analysis on task completion times, reported in Figures 3 and 4. Dots indicate sample means, while error bars are 95% confidence intervals computed on log-transformed data [6] using the t-distribution method. Strictly speaking, all we can assert about each interval is

	r = 0.3	r = 0.5	r = 0.7	r = 0.9	Overall
	pcp-neg	scatterplot-pos	scatterplot-neg	scatterplot-neg	scatterplot-pos
os	scatterplot-pos	pcp-neg	scatterplot-pos	scatterplot-pos	pcp-neg
eg	scatterplot-neg	scatterplot-neg	pcp-neg	pcp-neg	scatterplot-neg
eg	stackedbar-neg	stackedbar-neg	stackedbar-neg	ordered line-pos	stackedbar-neg
oos	ordered line-pos	ordered line-pos	ordered line-pos	donut-neg	ordered line-pos
	donut-neg	donut-neg	donut-neg	ordered line-neg	donut-neg
neg	stackedarea-neg	stackedarea-neg	ordered line-neg	stackedbar-neg	stackedarea-neg
neg	ordered line-neg	ordered line-neg	stackedarea-neg	stackedline-neg	ordered line-neg
leg	stackedline-neg	stackedline-neg	stackedline-neg	stackedarea-neg	stackedline-neg

Explorable Multiverse Analysis Reports

[Dragicevic, Jansen, Sarma, Kay, and Chevalier. Increasing the Transparency of Research Papers with Explorable Multiverse Analyses. CHI 2019: <u>https://explorablemultiverse.github.io/</u>]

We need better ways to acknowledge specification uncertainty and have a conversation about it through the literature

Okay, but back to elections...

New York Times Election Needle

[https://www.nytimes.com/interactive/2016/11/08/us/elections/trump-clinton-election-night-live.html]

The Fake Twitchy Hell Dials of the New York *Times*' Forecast Only Made Last Night Worse

By Jake Swearingen

Photo: rhyselsmore/Twitter

Around 9:30 last night, this tweet popped up on my timeline:

stop tweeting the fucking hell dial

- erictoral vote (@ericlimer) November 9, 2016

Alp Toker 🥝 @atoker

Looking for trends in *@nytimes*'s presidential forecast needle? Don't look too hard - the bounce is random jitter from your PC, not live data

Follow

 \sim

straight up: the NYT needle jitter is irresponsible design at best and unethical design at worst and you should stop looking at it

9:58 PM - 8 Nov 2016

509 Retweets 882 Likes

🚯 🙆 🖏 🍙 🚯 😔 🧒 🚳

Q 17 1J 509 0 882 Μ \sim

Follow

But shouldn't anxiety be proportional to uncertainty?

Uncertainty visualization as a moral imperative

We should...

present well-calibrated uncertainty that cannot be ignored in ways people can actually understand

Multivariate visualization

Multivariate data

Examples of useful techniques for multivariate data:

1. Small multiples

2. Scatterplot matrices

3. Parallel coordinates

Small multiples

Growth of Walmart

Value of small multiples

Reader-driven comparison

Micro-macro readings, layering

High-level properties through ensemble coding

Double use of position channel

SPLOM: Scatterplot matrix

[https://bl.ocks.org/mbostock/4063663]

Special case of small multiples variable -> **column** (x position) variable -> **row** (y position)

Each panel: column variable -> x position row variable -> y position

SPLOMs don't scale well with many variables

Scatterplot is **best representation** for correlation...

	WrdMean	SntComp	OddWrds	MxdArit	Remndrs	MissNum	Gloves	Boots	Hatchts
WrdMean	A					. .	:		*
SntComp	.	\mathbb{A}		, M					Ņ.
OddWrds	, *		A			پې			÷.
MxdArit		÷.							
Remodrs	چې		٠ ن ېپ		A				
MissNum	. . .	, M		,	,	\mathbb{A}			
Gloves	. .						A		
Boots		×.						\mathbb{A}	Å.
Hatchts			***			.	. .		A

SPLOMs don't scale well with many variables

Scatterplot is **best representation** for correlation...

But SPLOMs don't always scale

	WrdMean	SntComp	OddWrds	MxdArit	Remndrs	MissNum	Gloves	Boots	Hatchts
WrdMean	A		, ,	.		. 	.		*
SntComp	.	\mathbb{A}	, ,	,					2
OddWrds			A	.					*
MxdArit									
Remndrs	؞ کی ا	کی ا			A				
MissNum				, ,	, * ***	\mathbb{A}			
Gloves						ڹۜ	A	÷	
Boots	.	÷.	, și					A	À.
Hatchts			*	.		ŝ.			A

SPLOM alternative: parallel coordinates

[https://bl.ocks.org/jasondavies/1341281]

Scales better But not best representation

Usually needs interactivity

SPLOM alternative: parallel coordinates

[https://bl.ocks.org/jasondavies/1341281]

Scales better

But not best representation

Usually needs interactivity

Multivariate visualization

Small multiples help a lot (double position encoding!)

SPLOMs great for correlation

Parallel coordinates: trade effectiveness for scale

Other approaches: dimensionality reduction, then vis

Examples / exercises

Prediction and memory

Draw your line on the chart below

Percent of children who attended college

[https://nyti.ms/2jX8zue]

Small multiples versus animation

[https://excelcharts.com/animation-small-multiples-growth-walmart-excel-edition/]

Measles vaccination

https://tinyurl.com/mjd5sv9

What's wrong here?

This line, representing 18 miles per gallon in 1978, is 0.6 inches long.

This line, representing 27.5 miles per gallon in 1985, is 5.3 inches long.

[https://fivethirtyeight. com/features/science-isnt-

broken/]

Evolution of bacteria

https://vimeo.com/180908160

Hyberbolic trees

[https://youtu.be/fhbQy_NCwWI]

Document visualization: sentence length

[Keim & Oelke '07]

[McGuffin, Simple Algorithms for Network Visualization: A Tutorial, 2012]

[McGuffin, Simple Algorithms for Network Visualization: A Tutorial, 2012]

[McGuffin, Simple Algorithms for Network Visualization: A Tutorial, 2012]

Node linearization: Barycentric order

Node linearization: Barycentric order

Node linearization: Barycentric order

(also node-link + matrix example: MatLink)

[McGuffin]

NodeTrix: the other way around

Riche et al, <u>http://www.aviz.fr/Research/Nodetrix</u>, <u>https://www.youtube.com/watch?v=7G3MxyOcHKQ</u>

Small multiples

A Field Guide to

[http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/]