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Introduction

Course Participants

Tell me about yourself.

And what you know about Bayesian
inference.
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Introduction

What to expect from this tutorial?

1 Basics of Bayesian Modeling

Examples of Bayesian Inference

2 Computational algorithms in Bayesian statistics

MCMC and Stan

Want to learn more?

STATS 451 (2019 Fall), STATS 551 (2020 Winter)
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Basics of Bayesian Modeling What is Bayesian Data Analysis?

Bayesian Data Analysis

Quantities we observe

Data.

Quantities we wish to learn

Parameters.

Statistical inference:

estimate unknown (parameters) from known (data).

Bayesian methods:

quantify uncertainty in statistical inferences.
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Basics of Bayesian Modeling What is Bayesian Data Analysis?

Bayesin Inference

The process of ‘inductive thinking’ via Bayes’ rule.

Bayesian methods provide

models for rational, quantitative learning

estimators that work for small and large sample sizes

methods for generating statistical procedures in complicated problems
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Basics of Bayesian Modeling Bayesian Data Analysis Recipe

Three Steps of Bayesian Analysis

Setting up a full probability model

Joint probability distribution of all observed & unobserved quantities

Conditioning on observed: posterior distribution

Conditional probability distribution of unobserved given observed

Evaluating fitting & Interpreting posterior distributions.

Example: estimating 5-year survival probability of a new drug.
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Basics of Bayesian Modeling Bayesian Data Analysis Recipe

Three Steps of Bayesian Analysis

Setting up a full probability model

Joint probability distribution of all observed & unobserved quantities

Clinical trial example

For 1 ≤ i ≤ n, yi = 1 if alive and 0 otherwise. θ is probability of survival.

Mathematically

yi
i .i .d .∼ p(·|θ), 1 ≤ i ≤ n; θ ∼ p(·).

p(·|θ): conditional probability density (distribution); p(·): marginal
distribution. Same notation for continuous & discrete densities.
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Basics of Bayesian Modeling Bayesian Data Analysis Recipe

Three Steps of Bayesian Analysis

Numerical formulation of joint beliefs about y and θ:

For each θ, our prior distribution p(θ) describes our belief that θ
represents the true population characteristics.

For each θ and y , our sampling model p(y |θ) describes our belief that
y would be the outcome of our study if we knew θ to be true.

Once we obtain data y , the last step is to update our beliefs about θ:

· · · · · ·
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Basics of Bayesian Modeling Bayesian Data Analysis Recipe

Three Steps of Bayesian Analysis

Conditioning on observed: posterior distribution

Conditional probability distribution of unobserved given observed

Bayes Rule

p(θ|y) =
p(θ, y)

p(y)
=

p(θ)p(y |θ)

p(y)
,

where p(y) =
∑

θ p(θ)p(y |θ), y = {y1, y2, · · · }.

Unnormalized posterior density

p(θ|y) ∝ p(θ)p(y |θ).

normalizing constant: p(y) — y is observed.
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Basics of Bayesian Modeling Bayesian Data Analysis: Examples

Example: inference about a genetic status
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Basics of Bayesian Modeling Bayesian Data Analysis: Examples

Example: inference about a genetic status

Humans

Male: XY chromosome.

Female: XX chromosome.

Hemophilia

Male with the disease-causing
gene on X: affected.

Female with the
disease-causing gene on one of
two X: not affected.

Female with the
disease-causing gene on both
two X: affected.
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Basics of Bayesian Modeling Bayesian Data Analysis: Examples

Example: inference about a genetic status

What is the genetic status of an unaffected woman with an affected
brother, an unaffected father and an unaffected mother?

Only two possibilities: a carrier of the gene (θ = 1) or not (θ = 0).

Prior Distribution

Affected brother + Unaffected mother ⇒
Mother carries one ‘good’ and one ‘bad’ gene.

+ Unaffected father ⇒
She has fifth-fifty chance of having the gene.

Prior distribution for θ:

P(θ = 1) = P(θ = 0) =
1

2
.
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Basics of Bayesian Modeling Bayesian Data Analysis: Examples

Example: inference about a genetic status

Data

Neither of her two sons is affected (y1 = y2 = 0).

Two sons: independent and not identical twins.

Likelihood

P(y1 = y2 = 0|θ = 1) = 0.5× 0.5 = 0.25,

P(y1 = y2 = 0|θ = 0) = 1× 1 = 1.
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Basics of Bayesian Modeling Bayesian Data Analysis: Examples

Example: inference about a genetic status

Posteiror Distribution

Let y = (y1, y2), then Bayes’ rule gives

P(θ = 1|y) =
P(y |θ = 1)P(θ = 1)

P(y |θ = 1)P(θ = 1) + P(y |θ = 0)P(θ = 0)

=
0.25 ∗ 0.5

0.25 ∗ 0.5 + 1 ∗ 0.5
= 0.2,

which is smaller than 0.5 (given by the prior).

Adding more data

Another unaffected son.

P(θ = 1|y1, y2, y3) =
0.5 ∗ 0.2

0.5 ∗ 0.2 + 1 ∗ 0.8
= 0.111.
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Basics of Bayesian Modeling Bayesian Data Analysis: Examples

Example: Estimating a probability from binomial data

Data: a sequence of ‘Bernoulli trials’, either 0 or 1.

Binomial sampling model

p(y |θ) =

(
n
y

)
θy (1− θ)n−y .

Example: estimating probability of female birth.

Prior for θ: uniform on (0, 1).

Posterior for θ:
θ|y ∼ Beta(y + 1, n − y + 1).
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Basics of Bayesian Modeling Bayesian Data Analysis: Examples

Example: estimating percentage of Dunkin’ lovers

Prior Knowledge + Data = Current Knowledge

© EpiX Analytics LLC 
  

The principle of bayesian analysis 
Parameters and distributions are estimated using: 

Prior knowledge + Current data Current knowledge = 

Yang Chen (Univ. Michigan) BDSI Lecture 2018 July 11, 2019 22 / 47



Basics of Bayesian Modeling Bayesian Data Analysis: Examples

Freq vs. Bayes: Binomial Example

Frequentist Inference Bayesian Inference

Estimator θ̂ = y
n (MLE) y+1

n+2 (Posterior mean)

Variability θ̂(1−θ̂)
n (Asymptotically) (y+1)(n−y+1)

(n+2)2(n+3)
(Posterior variance)

Interval [θ̂ ± 1.96

√
θ̂(1−θ̂)

n ] [a, b]

≈ Confidence Interval Posterior Interval

Remark: [a, b], s.t.
∫ b
a

θy (1−θ)n−y

B(y+1,n−y+1) = 0.95.

C.I.: If confidence intervals are constructed using a given confidence level in an infinite
number of independent experiments, the proportion of those intervals that contain the
true value of the parameter will match the confidence level.
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Computational Algorithms

Bayesian Computation

Computation of posterior distribution

p(θ|y) = c · p(y |θ)p(θ) ∝ p(y |θ)p(θ),

where c =
∫
p(y |θ)p(θ)dθ.

Posterior inference: quantities which are functions of θ.

Computation of posterior predictive distribution

p(ỹ |y) =

∫
p(ỹ |θ)p(θ|y)dθ.

Bayesian computation – sampling from unnormalized densities, p(θ|y).
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Computational Algorithms

Bayesian Computation

Where is the mountain?
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Computational Algorithms

Bayesian Computation

Explore the mountain.
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Computational Algorithms

If you have a map – Importance Sampling.
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Computational Algorithms

If you DON’t have a map.
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Computational Algorithms

But you have Time and Patience.
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Computational Algorithms Markov Chain Monte Carlo
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Computational Algorithms Markov Chain Monte Carlo

Introduction to MCMC

Markov chain simulation (MCMC)

sampling from an arbitrary distribution

sequentially draw samples (Markov chain)

Use when: not possible/efficient to sample from p(θ|y) directly.

Key: Markov process with stationary distribution p(θ|y).
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Computational Algorithms Markov Chain Monte Carlo

Example of MCMC with Election Campaign

Yang Chen (Univ. Michigan) BDSI Lecture 2018 July 11, 2019 33 / 47
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Example of MCMC with Election Campaign
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Computational Algorithms Markov Chain Monte Carlo

Now that we are hiking, one step at a time...
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Computational Algorithms Markov Chain Monte Carlo
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Computational Algorithms Markov Chain Monte Carlo

Click Here to Show Animation.
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http://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/


Computational Algorithms Markov Chain Monte Carlo

If you DON’t have a map.
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Computational Algorithms Markov Chain Monte Carlo

And you DON’T have Time or Patience.
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Computational Algorithms Markov Chain Monte Carlo

And you still want to ROUGHLY SEE the mountain.
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Computational Algorithms Approximate Computation

Plan

1 Introduction

2 Basics of Bayesian Modeling
What is Bayesian Data Analysis?
Bayesian Data Analysis Recipe
Bayesian Data Analysis: Examples

3 Computational Algorithms
Markov Chain Monte Carlo
Approximate Computation
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Computational Algorithms Approximate Computation

Variational Inference: Introduction

a method from machine learning

approximates probability densities through optimization

faster than classical methods, such as MCMC

Idea:

posit a family of densities

find the member of that family closest to the target

closeness measured by Kullback-Leibler divergence
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Computational Algorithms Approximate Computation

Example: Gaussian mixtures

Yang Chen (Univ. Michigan) BDSI Lecture 2018 July 11, 2019 43 / 47



Computational Algorithms Approximate Computation

Approximate Bayesian Computation

Previous methods

Likelihood-based inference

Complex models

an analytical formula might be elusive

the likelihood function costly to evaluate

Simulate data – match observations
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Computational Algorithms Approximate Computation

Approximate Bayesian Computation
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