Information Visualization I

UM Big Data Summer Institute 2019

Matthew Kay Assistant Professor School of Information & Computer Science and Engineering University of Michigan

A little bit about me

Master's and Bachelor's in CS (Fine Art minor) from the University of Waterloo

PhD in CSE from the University of Washington

My work draws upon human–computer interaction, visualization, design, and statistics

What I would like to do today

Motivate why visualization is important.

Give you grounding to help you systematically create effective visualizations:

Perceptual principles

Design principles

Why visualize?

Anscombe's quartet

I		II		III		IV	
x	У	x	У	x	У	х	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89
		-		-		-	

4 datasets, same means, variances, correlation

Anscombe's quartet

O-ring failure in the Challenger

History of O-Ring Damage in Field Joints (Cont)

INFORMATION ON THIS PAGE WAS PREPARED TO SUPPORT AN ORAL PRESENTATION AND CANNOT BE CONSIDERED COMPLETE WITHOUT THE ORAL DISCUSSION

O-ring failure, Morton-Thiokol

O-ring failure in the Challenger

O-ring failure, Tufte

O-ring failure in the Challenger

O-ring failure, Tufte

Visualize to see patterns you wouldn't otherwise

Visualize for communication

What's Really Warming the World?

By Eric Roston 💓 and Blacki Migliozzi 💓 | June 24, 2015

Skeptics of manmade climate change offer various natural causes to explain why the Earth has warmed 1.4 degrees Fahrenheit since 1880. But can these account for the planet's rising temperature? Scroll down to see show how much different factors, both natural and industrial, contribute to global warming, based on findings from NASA's Goddard Institute for Space Studies.

[https://www.bloomberg.com/graphics/2015-whats-warming-the-world/]

How do we turn data into visualizations?

^	mpg 🍦	cyl 🔅	disp 🌐 🌐	hp 🌐 🗘	drat $\hat{}$	wt 👘 🗘	qsec 🗦	vs ÷	am 🗦
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1

*	mpg 🍦	cyl 🌼	disp 🍦	hp 🌐 🌐	drat ‡	wt $\hat{}$	qsec 🔅	vs ÷	am 🗦
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1

data -> ??? -> marks on the screen (or paper)

data -> ??? -> marks on the screen (or paper)

??? = some vis API

= some way of thinking about vis systematically

data -> ??? -> marks on the screen (or paper)

??? = New function for every chart type:
scatter_plot(data, ...)
bar_chart(data, ...)

• • •

data -> ??? -> marks on the screen (or paper)

??? = New function for every chart type:
scatter_plot(data, ...)
bar_chart(data, ...)

• • •

Every new chart is a new adventure! Too many specs! — Too high level!

data -> ??? -> marks on the screen (or paper)

data -> ??? -> marks on the screen (or paper)

Too low level!

data -> ??? -> marks on the screen (or paper)

??? = New function for every chart type
= Low-level drawing functions
= Grammar of graphics

Encode data with visual channels Display encodings with marks

Visual channels

(ggplot "aesthetics")

Position Color Hue Texture Connection Containment Density Color Saturation Shape $\blacksquare \bullet \star + \times$ Length $\triangleleft \theta$ Angle _<\!/~ Slope •••••••• Area Volume

Visual channels ----> Marks

(ggplot "aesthetics")

(ggplot "geometries")

Codifies data types, encodings/channels, marks

Maps data -> channels -> marks

Makes visualization specification straightforward

Undergirds ggplot, Tableau, Vega-Lite, Altair,... (terms may vary)

*	mpg 🍦	cyl 🌼	disp 🍦	hp 🌐 🌐	drat ‡	wt $\hat{}$	qsec 🔅	vs ÷	am 🗦
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1

(data types, channels, marks)

(data types, channels, marks)

mpg: numeric wt: numeric

(data types, channels, marks)

mpg:numericwt:numericwt-> x positionmpg-> y position

(data types, channels, marks)

mpg:numericwt:numericwt-> x positionmpg-> y positionmark:point

Grammar of graphics(data types, channels, marks)mpg:numericwt:numeric

wt	-> x position
mpg	-> y position

mark: point

Grammar of graphics (data types, channels, marks) numeric mpg: numeric wt: manual: nominal -> x position wt -> y position mpg

mark: point

Grammar of graphics					
(data typ	oes, channels, marks)				
mpg:	numeric				
wt:	numeric				
manual:	nominal				
wt	-> x position				
mpg	-> y position				
manual	-> color				
mark:	point				

Grammar of graphics						
(data types, channels, marks)						
mpg:	numeric					
wt:	numeric					
manual:	nominal					
wt	-> x position					
mpg	-> y position					
manual	-> shape					
mark:	point					

Grammar of graphics						
(data types, channels, marks)						
numeric						
numeric						
nominal						
-> x position						
-> y position						
-> color						
-> shape						
point						

Grammar of graphics					
(data typ	oes, channels, marks)				
mpg:	numeric				
wt:	numeric				
manual:	nominal				
wt	-> x position				
mpg	-> y position				
manual	-> color				
mark:	point				

(data types, channels, marks)

wt: numeric manual: nominal bin(wt) -> x position count(wt)-> height manual -> color

mark: bar

Why is the grammar of graphics useful?

1. Easier to specify many charts, combinations

2. Helps you design/evaluate charts systematically

1. Easier to specify many charts, combinations

mark: point

1. Easier to specify many charts, combinations

Not:

some_big_function_to_make_scatterplots(
 my_data,
 a_bunch_of_options

1. Easier to specify many charts, combinations

Not:

. . .

some_function_to_draw_grid()
some_function_to_draw_axes()
for (row in data) {
 draw_point(data[i]["x"], ...)
}

1. Easier to specify many charts, combinations
e.g., in ggplot
(data, channels, marks):

How well do these match, given the channel used?

E.g.,

How accurately do people perceive **position**?

How accurately do people perceive **area**?

Channels

Position Color Hue Texture Connection Containment Density Color Saturation Shape ∎●★+× Length $\triangleleft \theta$ Angle Slope __\/// Area •••••••• Volume

E.g.,

How accurately do people perceive position for quantitative data? ...for ordered data? ...for nominal data?

etc.

Channels

Position Color Hue Texture Connection Containment Density Color Saturation Shape Length Angle Slope Area Volume

E.g.,

What channel is best for quantitative data? ...for ordered data? ...for nominal data? etc.

Channels

Position Color Hue Texture Connection Containment Density Color Saturation Shape ∎●★+× Length $\triangleleft \theta$ Angle Slope _<\|/~ Area •••••••• Volume

Length encoding:

- →

Length encoding:

→
→

Length encoding:

Area encoding:

Symbols

ЦĿ.

Length encoding: Length Estimating Length, Area, and Volume of symbol estimated correctly of map symbols Perfect Correspondence Area Perceived of symbol underestimated Area encoding: Volume of symbol underestimated Actual

Encodings help us judge chart effectiveness

What encoding is best for quantitative data? ...for ordered data? ...for nominal data? etc.

Nominal

Encodings help us judge chart effectiveness

Ordinal

Nominal

Encodings help us judge chart effectiveness

Quantitative

Pick one, cross it off...

Pick one, cross it off...

Quantitative	Nominal
Position	Position
Length	Color Hue
Angle	Texture
Slope	Connection
Area	Containment
Volume	Density
Density	Color Saturation
Color Saturation	Shape
Color Hue	Length
Texture	Angle
Connection	Slope
Containment	Area
Shape	Volume

Effectiveness

This chart works because it uses accurate channels (ones with low estimation error).

This is the essence of effectiveness.

What about this?

What about this?

Quantitative

Position Length Angle Slope Area Volume Density **Color Saturation** Color Hue Texture Connection Containment Shape

Other insights from perception

Reference lines

Induce bias...

...but can be used to decrease error

https://www.csc2.ncsu.edu/faculty/healey/PP/

Preattentiveness -> popout -> layering Cylinders • 4 • 6 • 8 What do people see first?

What can people see separately?

Preattentiveness -> popout -> layering Cylinders 4 6 8 What do people see first?

What can people see **separately**?

Preattentiveness -> popout -> layering

4

6 What do people see first? 8

> What can people see separately?

Color
Sequential / diverging data

[http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

Sequential / diverging data

[http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

Sequential / diverging scales

Ordered / quantitative data may be sequential or diverging

This impacts encoding choice, for example:

Sequential color scale:

Diverging color scale:

Use perceptually uniform colormaps

[Bernice E Rogowitz and Lloyd A Treinish. 1993. Why Should Engineers and Scientists Be Worried About Color? IBM Thomas J. Watson Research Center. Retrieved May 11, 2013 from http://www.research. ibm.com/people/l/lloydt/ color/color.HTM]

For continuous color maps, Viridis (and co)...

[http://bids.github.io/ colormap]

For discrete colormaps, Color Brewer...

[http://colorbrewer2.org]

For more, hclwizard / colorspace R package

Color Picker

»Select and export colors using the

HCL color space.«

Deficiency Emulator

»Do your figures work for viewers

with color vision deficiencies?«

Palette Creator »Design your own color palette based on HCL principles.«

HCL Color Space

[http://hclwizard.org/]

Color Palettes

For color coding data visualizations it is crucial to choose a palette that appropriately captures the underlying information. Three types

Grammar of graphics + Perception helps us design more effective charts

Grammar of Graphics + Perception

Think in data types, channels, and marks.

Helps you specify and design charts using perceptually effective channels.

Consider sequential / diverging nature of data.

Use perceptually uniform colormaps.

Questions about the grammar of graphics?

Grammar of graphics

(data types, channels, marks)

mpg:numericwt:numericwt-> x positionmpg-> y positionmark:point

Design guidelines

Some rough design guidelines*

1. Match effectiveness with importance 2. Avoid ambiguity 3. Locality is king / eyes beat memory 4. Establish viewing order 5. Layer, layer, layer 6. When in doubt, grid 7. Treat visual attributes like adjectives

* These guidelines are drawn largely from my experience + personal preferences + the literature. Design is messy, these are not perfect, others will disagree with me, etc. *Caveat emptor*.

1. Match effectiveness with importance

2. Avoid ambiguity

Does the 3D mean anything here?

(Hint: No)

2. Avoid ambiguity

Marks should not have multiple reasonable interpretations

If it looks like it could come from data, it should come from data

3. Locality is king / eyes beat memory No: Thing ← Information I need to understand thing

Yes: Thing ↔ Information I need to understand thing

No

radarnegative

donutpositive stackedbarpositive stackedareapositive linenegative

stackedlinepositive

linepositive radarpositive parallelCoordinatespositive

stackedareanegative stackedlinenegative ordered_linenegative stackedbarnegative donutnegative ordered_linepositive

parallelCoordinatesnegative

scatterplotnegative scatterplotpositive

No

The left panel shows the Bayesian censored log-linear model, which gives us a posterior probability distribution over the mean log(JND) for each value of r. In the center panel we rank and group visualizations based on how precise estimations of correlations are with them (lower expected JND implies higher precision). In the right panel we estimate the ratio of average JNDs between succesive groups over all values of r from 0.3 to 0.8. The low precision group is between ~1.5 and 3 times more precise than the chance group. The high precision group is between ~1.5 and 2 times more precise than the medium precision group.

No

The left panel hows the Bayesian concered leg linear model, which gives us a posterior probability distribution over the mean log(0ND) for each value of a line center panel we rank and group visualizations based on how precise estimations of correlations are with them (lower expected one impressingler precision). In the right panel we estimate the ratio of average JNDs between succesive groups over all values of r from 0.3 to 0.8. The low precision group is between ~1.5 and 3 times more precise than the chance group. The high precision group is between ~1.5 and 2 times more precise than the medium precision group.

The left panel shows the Bayesian concered leg linear model, which gives us a posterior probability distribution over the mean log(0ND) for each value of a line center panel we rank and group visualizations based on how precise estimations of correlations are with them (lower expected one impressingler precision). In the right panel we estimate the ratio of average JNDs between succesive groups over all values of r from 0.3 to 0.8. The low precision group is between ~1.5 and 3 times more precise than the chance group. The high precision group is between ~1.5 and 2 times more precise than the medium precision group.

Count lookups!

Know where your audience will look first, second.

Think like a movie director. Are you telling a story?

https://www.youtube.com/watch?v=v4seDVfgwOg

Can be as simple as some numbers...

Or more complex, relying on salience, other visual cues, viewer expectations (maybe) ...

And you will read this at the end

Or more complex, relying on salience, other visual cues, viewer expectations (maybe) ... And you will read this at the end

Or more complex, relying on salience, other visual cues, viewer expectations (maybe) ...

5. Layer, layer, layer

Design for micro-macro reading

Pre-attentive attributes help

[http://graphics.wsj.com/elections/2016/fieldguide-red-blue-america/]

5. Layer, layer, layer

PVI Score: State presidential vote relative to nationwide vote

[http://graphics.wsj.com/elections/2016/fieldguide-red-blue-america/]

(small multiples)

Growth of Walmart

(small multiples = double use of position)

Growth of Walmart

year -> wrapped column (x position)

(small multiples = double use of position)

Growth of Walmart

year -> wrapped column (x position)

6. When in doubt, grid

And get synchronized axes as a bonus A. LINEAR MODEL

7. Treat visual attributes like adjectives

Don't use three attributes (size, color, shape, ...) to create emphasis where one or two will do.

The very tall building is very extremely tall.

(7b. Obey the pen)

1. The final Bayesian censored log-linear model gives us a posterior probability distribution over the mean log(JND) for each value of r. 2. We rank and group visualizations based on how precise people's estimations of correlations are with them (lower expected JND implies higher precision) 3. We estimate the ratio of average JNDs between successive groups over all values of r from 0.3 to 0.8.

(7b. Obey the pen)

Even visual texture is pleasing

Also makes it easier to create visual hierarchy and call out something important when you need to

Some rough design guidelines*

1. Match effectiveness with importance 2. Avoid ambiguity 3. Locality is king / eyes beat memory 4. Establish viewing order 5. Layer, layer, layer 6. When in doubt, grid 7. Treat visual attributes like adjectives

* These guidelines are drawn largely from my experience + personal preferences + the literature. Design is messy, these are not perfect, others will disagree with me, etc. *Caveat emptor*.

In sum

Understand the **effectiveness** of different aesthetics (encodings).

Understand where your viewer will look and what they want to do (tasks).

Visualize as a reflex during analysis.

Examples / exercises

Prediction and memory

Draw your line on the chart below

Percent of children who attended college

[https://nyti.ms/2jX8zue]

Small multiples

[https://excelcharts.com/animation-small-multiples-growth-walmart-excel-edition/]

Group activity

What are the variables / types?

Channels / encodings?

Marks?

Is this effective?

[https://fivethirtyeight. com/features/science-isnt-

broken/]

SPLOM: Scatter plot matrix

[https://bl.ocks.org/mbostock/4063663]

Hyberbolic trees

[https://youtu.be/fhbQy_NCwWI]

Evolution of bacteria

https://vimeo.com/180908160

Small multiples

PVI Score: State presidential vote relative to nationwide vote

[http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/]

Small multiples

A Field Guide to

[http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/]