
Learning	Linear	Classifiers
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Sn = {x̄(i)
, y

(i)}ni=1 x̄ 2 Rd y 2 {�1, 1}

Goal:	learn	model	parameters						so	as	to	minimize	loss	over	the	training	

examples

✓̄

h(x̄(i); ✓̄) = sign(✓̄ · x̄)

J(✓̄) =
1

n

nX

i=1

Loss(y(i)(✓̄ · x̄(i)))



What	if	the	data	are	not	linearly	separable?
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Given	the	training	data	illustrated	above	and	the	feature	

mapping,	find	a	corresponding	set	of	model	parameters	that	

perfectly	separates	the	data	in	the	new	feature	space.	



What	if	the	data	are	not	linearly	separable?
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Solution	à

Idea:	starting	with	the	eqn.	for	a	circle,	with	radius	1	and	center	at	2,2,	
work	out	the	coefficient	for	each	element	in	the	new	feature	space

Problem:	identifying	the	correct	mapping	can	be	difficult
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Representing	Data

• The	success	of	machine	learning	applications	relies	on	

having	a	good	representation	of	the	data.	

• Machine	learning	practitioners	put	a	lot	of	effort	into	

“feature	engineering”.
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How	can	we	develop	good	representations	

automatically?
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Feed forward Neural Networks
mum

composed of computationalunits neurons

E
g inputs

x O non linear activation function
xz h

gtox I output 4linear e g
z

combination
d h 1

Ite E I

neurons are arrangedin a network composed of Yayers
the specificarrangementcorresponds to the architecture

nodes units edges dependencies
units aggregate the outputs

x O O from the previous
layer

2 O O O HCI 0

Ks O O
dimensionality of the

output parameters will varyinput hidden
layer layers layer

with the architecture

in single unit
what did the single layerpresented above represent

logistic regression linear combination of
inputspassedthrough a

squashing
function
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O activation function jth layer

h
g
Wii x t Wiz xD Kth unit

hi g
Cwi x t wz xD ith unit

hz g wz
x tWii xD

forwardpropagation

h
3
f l wi h t w hi t wish

not necessarily the same as the other activation
functions

commonactivationfunctions
mm

fCz max o z rectifiedlinearunit relic

fat signCz thresholded

fCz et eZk Softmay common in multi class
settings

f Ct Y ite't sigmoid

f L tank hyperbolictangent similarto sigmoid
but f I 1

manymore

linearactivation is of little interest mightas well not
have a hidden unit

what are the hidden layers doingmum

The lastlayer is a Kumbia of the output
of all previous layers

In a way the hidden
layers essentially transform the input

maps the data to a new feature space ine
which we can learn a linear classifier

Example

Given the following data you learn a NN
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with two hidden units described by the following
equations
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2E Wii'x twiix hi Max90,2427

Show that thepoints in the new feature space are
linearly separable
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Learning	Neural	Networks
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Sn = {x̄(i)
, y

(i)}ni=1 x̄ 2 Rd y 2 {�1, 1}

Goal:	learn	model	parameters						so	as	to	minimize	loss	over	the	training	

examples

✓̄

J(✓̄) =
1

n

nX

i=1

Loss(y(i)h(x̄(i); ✓̄))



Overview	of	Optimization	Proc.
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Idea:	sample	a	point	at	random,	nudge	parameters	toward	values	that	

would	improve	classification	on	that	particular	example

Steps:
(0)			Initialize	parameters	to	small	random	values

(1) Select	a	point	at	random

(2) Update	the	parameters	based	on	that	point	and	the	gradient:

✓̄

(k+1) = ✓̄

(k) � ⌘kr✓̄Loss(y
(i)
h(x̄(i); ✓̄))



Optimization	Details
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Details	that	need	to	be	worked	out:
1) How	to	evaluate	the	derivatives	(when	there	is	a	hidden	layer)

2) How	to	initialize	the	parameters

3) How	to	set	learning	rate

4) How	to	reduce	likelihood	of	overfitting



SGD	– two-hidden	layer	NN
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SGD	– two-hidden	layer	NN
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Chain	Rule

 



 

 

SGD	– two-hidden	layer	NN

local	derivatives	are	shared!

1

(1)



A	Generalized	Approach

• Generalized	approach	to	computing	partial	derivatives

• As	long	as	your	neural	network	fits	the	requirements,	you	do	not	need	

to	derive	the	derivatives	yourself!



Overview	of	Optimization	Proc.
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Idea:	sample	a	point	at	random,	nudge	parameters	toward	values	that	

would	improve	classification	on	that	particular	example

Steps:
(0)			Initialize	parameters	to	small	random	values

(1) Select	a	point	at	random

(2) Update	the	parameters	based	on	that	point	and	the	gradient:

✓̄

(k+1) = ✓̄

(k) � ⌘kr✓̄Loss(y
(i)
h(x̄(i); ✓̄))

Note:	there	are	faster	optimizers	(a	lot	of	ongoing	research	in	this	area)
Popular	techniques:	SGD	with	Momentum,	Nesterov Accelerated	

Gradient,	AdaGrad,	RMSProp,	and Adam	Optimization (pg.	293-300)


