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What do we learn when we examine disease risk in space?
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- What is spatial epidemiology?
- In-class exercise.

- Discuss and understand the relevant scales of spatial analysis.



Maps!



Maps can condense a tremendous amount of information into an

image
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In pairs: What does this image tell us? What doesn't it tell us?



What is the role of in epidemiology?

- Maps are critically important for understanding and

interrogating spatial patterns of health and illness.
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What is the role of in epidemiology?

- Maps are critically important for understanding and

interrogating spatial patterns of health and illness.

- Maps give us clues to what might be going on or highlight
problems we need to address.

- Spatial epidemiology is about understanding the ecological and
individual factors contributing to the patterns we see

represented on maps.
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What types of spatial data do we see in public health and

medicine?

Point data:

- Individuals
- Households

- Environmental point sources, e.g. well/water source
Areal data:

- Neighborhoods/cities/states
- Legislative districts

- Health center catchment areas



An atomistic perspective

Sex Mortality
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Solid lines = causal effects



Why should epidemiologists care about space?

What are some examples of diseases for which space is unimportant,

i.e. where an atomistic perspective is sufficient?



Mapping immediately gives an perspective
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Dashed lines = effect modifiers, Solid lines = causal effects



Why do epidemiologists care about space?

Tobler’s first law of geography:

“Everything is related to everything else, but near things
are more related than distant things.” (Tobler, 1970)



What are some causes of spatial relatedness in epidemiological

data?




What are some causes of spatial relatedness in epidemiological

data?

- Contagion, e.g. of infectious diseases
- Common environmental exposures

+ Common social risks
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The of spatial epidemiology

- GIS/Maps

- Hierarchical regression modeling

- Spatial smoothing/interpolation

- Qualitative analysis

- Theoretical simulation



A Worked Example



How good is your memory?

- I'll read a sequence of 9 numbers.

- We'll wait 15 seconds after | stop reading the numbers, and then

write down as many as you can remember.



Count how many you got correct.

The numbers:
- 26,29, 3, 25, 24, 5,17, 15, 9

On your paper, write down how many you got correct next to “t=1".



Let's do it again!



Let's do it again!

The numbers:
- 16, 24,18, 8, 26, 29, 17, 1, 22

Count up how many you got correct this time around, and write it
down next to “t=2".



Share your responses

Use the form available here:

https:/ /bit.ly/2GONg5X



Now let’s scale this up...

- Imagine you were using this to assess variation across

neighborhoods in this outcome.



Now let’s scale this up...

- Imagine you were using this to assess variation across

neighborhoods in this outcome.

- What might cause neighborhood-level variation in performance

on this kind of task?



Close vs. Far



What is near and what is far?

You see? Oh. Okay, I'll do it once
more for you. Okay? Okay!

THIS IS NEAR.

This is faaaaaaar!

21



Nearness is really a matter of scale and depends on what the

for our question is

- Individuals living in the same neighborhood are nearer within

cities than those who live in different neighborhoods.
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Nearness is really a matter of scale and depends on what the

for our question is

- Individuals living in the same neighborhood are nearer within
cities than those who live in different neighborhoods.

- Adjacent counties may be the relevant level of nearness when
we're thinking at the state level.

- Nearness may be a function of accessibility rather than just
pairwise distance.



Big change can happen over short distances
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Health Gaps in New York City

NEW YORK CITY Follow the discussion
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Health Gaps in Philadelphia
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What are places and how do they

impact health?



Places are subsets of space with shared attributes

- Households

- Neighborhoods
- Cities

- States

- Countries



Place-level variation is often represented by a

Estimated TB incidence rates, 2016
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In a choropleth areas are shaded or colored based on their value on some outcome
metric, in this case annual TB cases per 100K population in 2016. (From WHO 2017
Global TB Report)



Levels of analysis: Global

What might we want to understand at the national level?



Rapidly-spreading amenable to global representation

SARS : Cumulative Number of Reported Cases
Total number of cases: 2671 as of 8 April 2003, 14:30 GMT+2

Cumulative number of Reported Cases

(From 1 November 02 to 8 April 03)
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Global spread of SARS during 2003 pandemic.



Environmental risk stemming from variation in uranium deposits

amenable to county-level representation

Variation in radon exposure at the county level in Michigan.



Impact of socioeconomic factors within cities may necessitate

small-scale, level perspective

Neighborhood boundaries often reflect wide variation in SES and potentially envi-

ronmental exposures.



Infectious disease may necessitate a micro-level per-

spective

N

John Snow’s map of mortality from the 1854 Broad Street Cholera outbreak



Picking the right scale for analysis can be tricky
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State-level opioid prescription rates, 2013 (Source: CDC)



Higher levels of aggregation can conceal important lower-level

variation
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County-level opioid prescription rates, 2013 (Source: CDC)



Classic choropleths can be deceptive
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cartogram in which state size is proportional to population.



Higher resolution can be instructive, but obscures geographic
features

US Presidential Election 2016
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Sometimes less is more?

2016 ELECTION MAP
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