Optimization

Hyun Min Kang
July 16th, 2019
Michigan Big Data Summer Institute

What is optimization?

* From Merriam-Webster:

* (noun) an act, process, or methodology of making something (such as a design,
system, or decision) as fully perfect, functional, or effective as possible.

* specifically : the mathematical procedures (such as finding the maximum of a
function) involved in this

* A mathematical definition:
* Given f: A = R,
findx* € A
such that f(x) is minimized at x = x*

(Note: maximization can be easily flipped to a minimization)

Numerical optimization:
examples with closed-form solutions

* Unconstrained optimization
* f(x) =x%+2x+2
e f(x) = (x +1)?+1 =1 (equality holds at x = —1)

* Constrained optimization
c f(x) =x?+2x+2, (x=0)
* f'(x) =2x+ 2 >0 when x = 0, so monotonically increasing.
* f(x)is minimizedatx = 0, and f(x) = 2.

You are very lucky if your real-world optimization problem has a closed-form solution

Combinatorial optimization : an example

Manhattan Tourist Problem:
Find a path with
the minimum total cost.

Today, we will not cover
combinatorial optimization

Mathematical optimization problem

* Minimize the objective function

fo(x)

* subject to the constraints
fix)<b;, ief{l2 - m}

* where
* optimization variable x = (x4, -+, Xp)
* objective function fp: R" - R
* constraint function f;: R*" - R, i € {1,---,m}

Why study optimization?

* It is important to formulate what you want as an optimization problem.

(e.g. LASSO) Given X € R™P,y € R, and 4 = 0,
We want to find 8 € RP that minimizes

FB) = lly = XBll, + 2Bl = = XBY Y= XB) +2) i

* It is even more important find out how to solve the optimization problem.
* This may not be a fun activity for everybody, but useful for most of us.

Types of optimization problems

* By type of solutions * By type of objective function
* Numerical optimization * Convex optimization
* Combinatorial optimization * Non-convex optimization
* By number of variables * By constraints
* Single-dimensional optimization * Constrained optimization
* Multi-dimensional optimization * Unconstrained optimization
* By randomness in algorithm * By optimality of the solution
* Deterministic optimization * Local optimization

 Stochastic optimization * Global optimization

Optimization: three key questions

1. How can | formulate the problem into an optimization problem?
* Articulate your problem in mathematical terms.
* In some cases, you may not even have realized that it is an optimization problem.

2. Dol know how to obtain a solution for the optimization problem?

* Having an objective function does not automatically solve the problem.
e Certain optimization problems are much harder than others.

3. Dol know what the time complexity of the method | chose is?

* |f you have big data, time complexity is one of the key factor to consider.
* The solution should be not only possible but also feasible to obtain.

Example: maximum likelihood estimation (MLE)

* Likelihood function
* x : observed data
* 0 : model parameter
* f(X = x; 0) : probability density (mass) function
* L(0;x) = f(x; 0) : likelihood function

* Maximum likelihood estimation (MLE) : find
0@ = argmaxy L(0; x)

* MLE is a useful across many areas of statistical inference.

* MLE is an instance of mathematical optimization problems

Example: MLE in logistic regression

* Given
-y e{—-1,1}"
e X € R™XP
e Likelihood function
n n 1
L(B) = Pr(y; = 1; X, =1_[
(B) _ (i B) T+ exp(—y T B)

* Log-likelihood function

n 1
1(B) = logL(B) =), log <1 + exp(—yial ﬁ))

This is an unconstrained optimization problem

10

A simple 1-dimensional case

* Suppose that p = 1, then the log-likelihood function becomes

n 1
[(B) =logL(B) = zi=1 log [1 + exp(—y;x;f)

 Maximum likelihood estimate (IVILE) is

R n 1
= arg max lo [)
B 5 B (2i=1 5 1+ exp(—y;x;0)

Q. Does a close-form solution exist?

11

Example : 1-d MLE in logistic regression

n <- 1000 # make 1,000 arbitrary example points

X <- rnorm(n) # where x 1s normally distributed

y <- rbinom(n,1,1/(l+exp(-x))) * 2 — 1 # y follows univariate logisti
c model of x

df <- data.frame(x=x, y=Yy)

library(ggplot2)

ggplot(df,aes(x,y)) + geom point(position=position jitter(w=0,h=0.05),
alpha=0.3)

See the examples in the R markdown file in Canvas

12

Example data (jittered

1.0-
05-
> 0.0-

-0.5-

13

Likelihood function

n 1
[(B) =logL(B) = zizllog [1 + exp(—Y;x;f)

11kl <- function(beta, x, y) {
return(-sum(log(l+exp(0-y*x*beta))))

}
betas <- (-100:100)/25

df <- data.frame(beta=betas,llk=sapply(betas,function(b) { 1llkl(b,x,y) }))
ggplot (df,aes(beta,llk)) + geom line()

14

Visualization of the likelihood function

-1000 -

-1500 -

Ik

-2000 -

-2500 -

beta

15

Single-dimensional optimization problem

* Given
* f(x) : the objective function
* We do not know how the function is shaped a priori.
* Evaluation of f(x) could be expensive — needs as few evaluations as possible.

* Want
* Find x that minimizes f(x)
* How difficult can this be?

16

Single-dimensional optimization could be tricky

G

X1 X2
Image: Press WH, Teukosky SA, Vetterling W, Flannery BP (2007) Numerical Recipes, 3rd Edition, Cambridge University Press

Local vs. Global optimization

* Globally optimal point: x is globally optimal if
fo(x) = infyexfo(2)

where X is a set of values that satisfy the contraints

* Locally optimal point: x is locally optimal if there exists R > 0 such that

fO (x) — irlf|z—x|SR, zEXfO (Z)

18

Bracketing: from global to local optimization

* The goal of bracketing is to find three points such that
a<b<c

f(b) < f(a)
f(b) < f(c)

* Once such a, b, c are identified for a continuous function f(-), there should
be at least one locally optimal point between a and c.

19

Golden section search

Minimizing the worst-case damage

b—a xX—D>b
w = Z =

c—a c—a
* The next interval will have length either 1 —worw + z.
* Optimal condition must satisfy the following two conditions:
cl—-w=w+z

VA
‘ —

1-w

* Solving the equations will lead to the golden ratiow = %g = (0.38197.

* This will guarantee that the interval size will reduce by ~38% at each step.

Algorithms for single-dimensional optimization

 Golden section search

* At each iteration, the bracket size reduces by ~38%.
* Guaranteed convergence, but could be slow.

* Parabola method

* Approximate a quadratic function based on 3 points.

* Often faster than golden search, but may not converge.
* Brent’s method

* Combination of parabola method and golden search.
* Most widely used method for single-dimensional optimization.

22

Finding MLE using Brent’s method

make sure to flip the sign of the objective function
to convert the problem into miminization problem.
print (optimize (function(b) { 0-11lkl(b, x, y)}, interval=c(-4,4)))

Sminimum

[1] 0.9865495
##

Sobjective
[1] 601.4521

23

Multi-dimensional optimization

* More common type of optimization problems
* Many variables need to be estimated together.

* A LOT harder than single-dimensional optimization
* The search space is A LOT larger, especially for high-dimensions
* Checking for local minimum is more complicated.
* Checking for global minimum is even more complicated.

* A LOT more diversity in the available algorithm:s.

24

Ways to optimize multi-dimensional function

* If only the objective function is available (no gradient or Hessian)
* Nelder-Mead algorithm

* If the objective function and gradient are available

* Gradient descent (coordinate, batch, stochastic) algorithms
* Quasi-Newton methods : BFGS or L-BFGS-B algorithms

* If objective function, gradient, and Hessian are available
* Newton’s method
but Hessian is expensive to compute for high-dimensions, so not very common.

These are generic methods, and many other context-specific methods are available *

Nelder-Mead algorithm

* A general-purpose multi-dimensional minimization method.

e Published in 1965, and cited >29,000 times to date.

* Simple to use - does not require derivatives.

* Works quite well in practice for low (e.g. several) dimensions.

* No theoretical guarantee for convergence (either local or global)
e Typically slower than other methods that leverage gradient.

26

Basic operations of Nelder-Mead algorithm

high

reflection

reflectlon and
" expansion

Original Simplex

low

contraction

"/ 4 multiple
el 4 contraction

Press WH, Teukosky SA, Vetterling W, Flannery BP (2007) Numerical Recipes, 3rd Edition, Cambridge University Press

lllustration
of
Nelder-Mead
Algorithm

https://userpages.umbc.edu/~rostamia/2017-09-math625/images/nelder-mead.gif

28

https://userpages.umbc.edu/~rostamia/2017-09-math625/images/nelder-mead.gif

Example of multi-dimensional optimization

* Multi-dimensional logistic regression

l . - n | 1
(B) =logL(B) = 21‘-1 Og(l + exp(—yixiTﬁ))

* A straightforward extension of the 1-d logistic regression

29

Example R code

1000 # make 1,000 arbitrary example points

<- c¢(0.3, 0.1, 0.03, 0, 0) # These are true effect sizes

length(beta) # p 1s the dimension of the variables
matrix(rnorm(n*p), n, p) # X i1s a (n x p) matrix of predictor variables

rbinom(n,1,1/(l+exp(0-X%*%beta))) * 2 - 1 # y is a size n vector of -1/1

30

Example of simulated data

head (X)

##
##
##
##
##
##
##

[1,]
[2,]
[3/]
[4,]
[5,]
[6,]

table(y)

y

-1

1

469 531

[,1]

.4338128
.3658146
.1087396
.1451349
.3856186
.6401423

[/2]

1.
2.

.55187016
.25108105
.42582282 -0.
.06481368 -0.
.25909865 0
.05290198 -1.

[,3]
20380712
78898510
09182399
85645621

.88808601

59694764

[,4]

.302355079
.842643877
.303832621
.939867038
. 755552557
.003498132

o O O O B+

[/3]

.20147809
.78737581
.25927485
.95440592
.65323539
.09643192

Likelihood function

11k2 <- function(b, X, y) {
return(-sum(log(l+exp(-y*(X%*%b)))))

}

11k2(c(0,0,0,0,0), X, Vy)

[1] -693.1472

Null likelihood

11k2(c¢(0.3,0.1,0.03,0,0), X, y)

[1] -677.0216

Likelihood at the true parameter
Q. Is this the MLE?

32

Nelder-Mead is implemented in optim()

optim {stats} R Documentation

General-purpose Optimization

Description

General-purpose optimization based on Nelder—Mead, quasi-Newton and conjugate-gradient algorithms. It includes an option for box-constrained optimization and
simulated annealing.

Usage

optim(par, fn, gr = NULL, ...,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN",
"Brent"),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE)

optimHess(par, fn, gr = NULL, ..., control = list())

Arguments
par Initial values for the parameters to be optimized over.
fn A function to be minimized (or maximized), with first argument the vector of parameters over which minimization is to take place. It should return a
scalar result.
gr A function to return the gradient for the "BFGS", "CG" and "L-BFGS-B" methods. If it is NULL, a finite-difference approximation will be used.
For the "SANN" method it specifies a function to generate a new candidate point. If it is NULL a default Gaussian Markov kernel is used.
cee Further arguments to be passed to £n and gr. 33

mat+hAad The maoathad 1 he 1icad Qane ‘Nataile’ Can he abhhroaviatad

Logistic MLE using Nelder-Mead algorithm

optim(c(0,0,0,0,0), function(b) { 0-11k2(b, X, vy)})

Spar

[1] 0.35057819 0.09064599 -0.03585259 0.10049316 -0.06493131
St

Svalue

[1] 674.4148

St

Scounts

function gradient
e 312 NA
##

Sconvergence

[1]1 O

##

Smessage

NULL

Optimization with gradients

e Gradient is a multivariate generalization of derivative

Vi) = (i@ g i(e))

* For differentiable objective function, gradient is useful..
e ...to approximate the “slope” of the objective function.
 ...toreduce the number of function evaluations.

* ... to achieve better convergence properties.

35

Coordinate descent algorithm

15 [z, y) = 5x2| — by + 5y2

 Alternate each dimension for iterative

ol update.

* Uses single-dimensional derivative to
determine the direction and size of
update.

0.5}

* One of the simplest method.

—-0.5¢}

* Does not work at all in some cases
(where no improvement can be made
using a single dimension).

-1.0}

—155 1.0 05 0.0 0.5 1.0 1.5

) Image: Wikipedia °°

Gradient descent algorithm

* Also called steepest descent algorithm.

 Parameters are updated to the direction
proportional to the negative gradient
of the objective function

2 = 20 _ A0y £ (20)

* Choosing the step size is one of the
tricky part in implementation

https://en.wikipedia.org/wiki/Gradient_descent
37

Stochastic gradient descent (SGD)

* For very large data, calculating gradient across all data can be time-consuming.
* In many cases, the object-function can be separated into a summation form

fo(x; D) = Zfomde

* Then, the gradient can also be represented into a summation form.

V fo(a; D) ZVfO (a; d;)

 Stochastic gradient descent compute gradlent from partial data (single
observation or mini-batch) to expedite the speed of update at the expense of
smaller improvement at each update.

Types of gradient descent algorithms

* Batch gradient descent
* Use all observations to compute gradient V fj (az(t)5D)
* Takes longer to compute, but gives a right direction to update parameters.

 Stochastic gradient descent |
e Update the parameters using a single-sample gradientVféz) (m(t’i); dz.)
* Gradient can be computed faster, but update can go in a wrong direction.

* Mini-batch gradient descent
 Compute gradient using a small batch of samples.

* Gradient is more informative than using only a single sample, at the expense of
increased cost of computation.

Stochastic gradient descent - lllustration

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent

Image by Imad Dabbura from towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3

https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3

Benefits of stochastic gradient descent

| | | | |]]]]

* SGD typically converges much
- faster than batch update
algorithms per accessed data
points.

0.6 —

0.5 —

o
s
|

LBEGS

|

.+ SGD converges fast at the
beginning, but may converge
slowly at the end.

Empirical Risk
&

o
[}

0.1 —

0 I I I I T T ——
0 05 1 1.5 2 2.5 3 35 4
Accessed Data Points x10°

Bottou L, Curtis FE, Nocedal J (2018). Optimization methods for large-scale machine learning. SIAM Review, 60(2), 223-311.

Stochastic gradient descent for logistic regression

Criterion fk

0.65

0.60

0.55

0.50

Full

Stochastic
Mini-batch, b=10
Mini-batch, b=100

[teration number k

Criterion fk

0.65

0.60

0.55

0.50

ini-batch, b=100

ull
tochastic
ini-batch, b=10

Example from R. Tibsharani’s lecture

1e+04 1e+06

Flop count 47

Quasi-Newton methods

* Gradient descent — uses gradient to determine the next point
2D — 20 _ O £ (2)
* Newton’s method — uses (expensive) 2"d-order information.
1) _ 0 _ [o2 f ()] 0
2 =20 — |y ()| V()
* Quasi-Newton methods approximate Hessian using gradients

2D — 0 _ 0 [H(t)] V()

where H are iteratively updated using previous gradients

43

Broygen-Fletcher-Goldfarb-Shanno (BFGS) update.

* BFGS algorithm
ctet s = 2 — gt and y = Vfy (1) — Vo ()

* The BFGS update approximate Hessian using the following rule
ny H(t-1) ssl H(t1)

t) — gt=1) 4
H H ' yT's sTH(t-1)g

* L-BFGS-B algorithm
Extended version of BFGS with two additional features:
* Limited memory — compute H more rapidly with less memory.
* Box constrains — Allow box-like constraints in the optimization problem.

BFGS and L-BFGS-B are implemented in optim()

optim {stats} R Documentation

General-purpose Optimization

Description

General-purpose optimization based on Nelder-Mead, quasi-Newton and conjugate-gradient algorithms. It includes an option for box-
constrained optimization and simulated annealing.

Usage

optim(par, fn, gr = NULL, ...,
method = c("Nelder-Mead", "BFGS", "CG", "L--BFGS-B", "SANN",

“Brent") , - —

lower = -Inf, upper = Inf,
control = list(), hessian = FALSE)

optimHess(par, fn, gr = NULL, ..., control = list())

Arguments

par Initial values for the parameters to be optimized over.

fn A function to be minimized (or maximized), with first argument the vector of parameters over which minimization is to take
place. It should return a scalar result.

gr A function to return the gradient for the "BFGS", "CG" and "L-BFGS-B" methods. If it is NULL, a finite-difference 45

approximation will be used.

Gradient of logistic objective function

n

foB) = ~1B) =) log[1 +exp(-yixi B)]

I

N —yixi exp(—yix B)
B =), Tt ensTh)

logistic.gradient <- function(b, X, y) {
tmp <- exp(-y*(X%*%b))
return(colSums(matrix(-y*tmp/(l+tmp), nrow(X), ncol(X)) * X)
)

}

46

Running L-BFGS-B Algorithm

optim(c(0,0,0,0,0),

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

fn = function(b) { 0-11k2(b, X, v)},
gr = function(b) { logistic.gradient(b, X, y)},
method="L-BFGS-B")

$par

[1] 0.35075554 0.09069752 -0.03581004 0.10039737 -0.06488337
Svalue

[1] 674.4148

Scounts

function gradient

6 6

$convergence
[1] O

Smessage
[1] "CONVERGENCE: REL REDUCTION OF F <= FACTR*EPSMCH"

47

So far we have learned...

* Single-dimensional optimization
 Golden section search
* Brent’s method

* Multi-dimensional optimization
* Nelder-Mead algorithm

Coordinate gradient descent

Batch (steepest) gradient descent

Stochastic gradient descent
e Quasi-Newton methods : BFGS, L-BFGS-B

These are “generic” algorithms that do not depend on properties of the objective function

48

Specialized optimization methods

* There are many optimization methods that are specialized for particular
subset of optimization problems.

* These methods exploit the intrinsic structure of the problems to more
accurately and/or efficiently solve the optimization problems.

* Some specialized optimization methods are still quite general (i.e.
applicable to a wide range of similar problems), while some others are
tailored only to a particular instance of problem.

Some examples of specialized optimization

* For logistic regression, the standard optimization used is
“Iteratively Reweighted Least Squares” (IRWS)

* For LASSO, where we optimizes the following function

F@® = lly = XBll, + 2Bl = = XBT G- XB) +2) I

the “least-angle regression” (LARS) is the algorithm used often.

We won’t have time to look into the details of these methods, but there are reasons
why these algorithms are well-suited for these particular problems.

Some widely used optimization methods

* Expectation-Maximization (E-M) algorithm

e Simulated annealing

* Linear programming

* Quadratic programming

* Semidefinite programming

* Alternating direction method of multipliers (ADMM)

E-M Algorithm : Overview

* [terative algorithm for solving MLE problems with missing data

* E-M algorithm is particularly useful when..

* There are missing (unobserved) data
* The MLE is analytically intractable if missing data is unobserved
* The MLE would analytically be tractible if missing data was observed.

* A popular and highly cited (>55,000 times) method.

The basic E-M strategy

* Types of data
* Complete data (x, z) : what we would like to have
* Observed data x : individual observations
* Missing data z : hidden/missing values

* The E-M algorithm overview

1.

2.
3.
4

Initialize the parameter 9"
E-step : calculate the distribution of hidden value using current parameter o)
M-step : update the parameter 0"tY to maximize the expected log-likelihood.

Repeat step 2-3 until convergence.

53

Th Expectation-Maximization algorithm

* E-step
Given 8% and &, calculate the following quantity :
L6 @, z) f(x,26"Y)

)y _ _
) = 6 g(@e®)

* M-step
Find 8™ = arg maxy Q(0]0") that maximizes the expected log-likelihood
Q(6]6Y) = E, [logL(O]w, Z)\H(t),w] = / w(zlz,09) log L(0|x, 2)dz

Z

54

Key property of the E-M algorithm

62 * The expected log-likelihood function satisfies that

:(0) < log L(8|z) and g;(8") = log L(6Y|)

log P(x; 6)

* The M-step maximizes the surrogate function,
making the likelihood always increase at each
iteration.

0“*) = argmaxg g (6)

h L0 V|z) > L(60Y|x)

Do CB and Batzoglou S (2008) Nat Biotechnol 26(8):897-89

55

Example — Gaussian mixture model

50 -

40 -

count

=

10

56

Gaussian mixture model with true labels

50 -
40 -

30 -

count

20 -

| | | .
1 | \ \ . A A
10- N oAl |y YA

57

Labels inferred from the E-M algorithm

50 -
40 -
30-
E |
8
o |
20 -
A
| | f f'\" | A A
- / \ N \ N N ./ \ ,t\/ \ A
/ L | '/\‘. !,'\ f '.\ /’f v "\'/ \:ﬁ‘ \I \JN 4 I, A/ ‘\
. ,
| V/ AR .J \« \ N‘L Al
0 ;'\ VUIIAMAL o
’ ; .

pred.1

FALSE
— TRUE

58

Two dimensional Gaussian mixture

X2

X1

10

59

2D Gaussian mixture with true labels

X

60

X1

Inferred labels with E-M algorithm

pred.1
FALSE
TRUE

X2

61

x1

Challenges in hill-climbing methods

Global —> .
. ocal
Maxima Maxima
,/’/’/// \ &ﬂ%ﬁ%‘%&-
......... =
S0 ‘I//// ¢ \\ \‘\"“ "‘Q“’: ==
= e
Search *‘::::’\\?% /
Path Start oY/

Image : Antal B and Haidu A (2011) Acta Cybernetica, 20(5):5-15

62

Overcoming the challenge : chaotic jump

Global —>y Chaotic
Maxima | i

)/ A VO —
== "- / ‘}\'l" PN
= %7 =

NS W/, 4 =
S II/////“\ ' =
w5774 g

)89
w2 ‘%\3‘&}_\\

- g

e WAV

63

Annealing

* Annealing is a manner in which crystals are formed.
* Gradual cooling of liquid can form crystal lattice

s NP0 0.0 020200
Saselsaciinetess
Sscsssssesessts
035803r e SeS0808 M5
..: 029 % 050409
2Ja¥ale a0
Segesedndroelnle?
830 o ‘O.G..“..

Bargi A. et al. (2010) Nat Chem 2:581-587

64

Simulated annealing

* Concept
* Numerical optimization procedure which aims for global optimization.
* Use analogy of thermodynamics

* Key idea
* Incorporates temperature parameter into the optimization procedure
* At high temperature, explore the parameter space
* At low temperature, restrict exploration.

65

Updates in simulated annealing

* Given a temperature, assume a probability proportional to Boltzmann factor

P(0) x exp (J 01(,9)>

» When updating parameters from 0y to 61, accept the change probabilistically

)

* New parameter must be chosen based on a random procedure.

If the solution was improved, always accept the new parameter.

* Otherwise, if T is high, the new parameter will be accepted with relatively often.
* When T is low, the new parameter will be very rarely accepted.

66

lllustration of simulated annealing procedure

Global Maximum

Local Maximum
Parameter 2

- ~'.-
Simulated »3
. D
i ¥ . N M S
| f s N } “a- -
- ! - q' J 4 . " ’ -] J y e,
- T J 1 s .) . B o ——— i
nnealin 1] 7 LA LI AT REE
s T L L Yook £ T A T
S L7~ Jump 1 el
e ' J e - - —
- _,7_-_.-1_{:") Y S Ay | I i T S i S ——
a e Fa ' A T - o R
=~ - - P . ' 4 - T - v o . T et e e ———
> g e o ‘J—A_'I e oy T e r"r" P S o - -
& P ' af A N e ."'_""r" .’:.’r".P’ v '—"’P’" -
- & . ’ ’ D e T S M -~
T e —— - - — -
- - — = — — — — — — — — g

Parameter 1

Image by Max Bama

Simulated annealing : highlights

* It is a global optimization method
* Overcomes disadvantages in hilling-climbing approach
* Useful to avoid being trapped at local optima for high-dimensional problems

* It is a Markov-chain Monte-Carlo (MCMC) method

* Randomly updates the the parameter.
* Probabilistically aceept the new parameter based on Metropolis-Hasting (MH) procedure.

* Useful in solving a variety of optimization problems
e ..including combinatorial optimization such as the Traveling Salesman Problem
* implemented in optim() functioninR

Convex optimization

* Convex optimization is a subset of

stephen Boyd and mathematical optimization problem.
Lieven Vandenberghe

e Often there is much easier solution than
non-convex optimization problems.

convex o
Optimization -

tf (z1) + (1 =) f (z2)

F(tr + (1 — t)a) >

try —‘r(l—t):l?g 69

Example : Diet Problem

Doctor’s recommendation on diet restriction
* No more than 13,800mg of fat consumption
* At least 600mg, 300mg, 500mg of vitamin X, Y, Z consumptions.

Goal is to come up with most cost-effective diet plan

Cost Fat Vitamin X Vitamin Y Vitamin Z
/unit mg/unit mg/unit mg/unit mg/unit
Food A $5.00 800 50 10 150
Food B $1.00 6,000 3 10 35
Food C $6.00 1,000 150 75 75

70

Formulating the problem mathematically

* Objective function

fol@)=c'z, c=[5163"

e Constraint functions

filz) =a; = < b
fo(x) = az & > by
f3(x) = agx > b3
fa(x) = aje > by

a; = [800 6000 1000 400]*, as = [50 3 150 100]*

as = [10 10 75 100]%, a, = [150 35 75 5|7
b, = 13800, by, = 600, bs = 300, by = 550

71

Linear programming (LP)
* Optimization variable
x = (r1,...,2p) € R
* Objective function : minimize

fol®)=c'z+d

e Constraint functions : subject to

Gx < h
Az =0
G e R™P A e R?P

72

Simplex algorithm for LP

* Optimal point occurs in one of the vertices of the simplex

* boot::simplex () in R can solve this problemAefficientIy
3__

Image: Wikipedia

73

Quadratic programming (QP)

e Optimization variable
L — (331,...,3319) ERp

* Objective function : minimize

1
fo(z) = §€ETP33 +q @+

e Constraint functions : subject to

Gx < h
Ax =0

G e R™WP A e RIP

74

Optimally separating hyperplane

x2 O Xz O
— O O O O
@,
@, O
7
Maximum.
N /margin
\\ \
> — >
) & ' Xy

Image: Josephine Sullivan
75

Maximizing the margin of hyperplane

e Minimize 7 ||w||* = ;ww

e Subjecttoy;(wlx; —b) > 1
fori € {1,...,n}

This is a quadratic
programming (QP) problem

76

Support Vector Machine (SVM)

* To allow non-separable
hyperplane, define a hinge loss

& = max (O, 1 — y;(wha; — b))

* Objective function for SVM

Minimize % |lw]]* + C Y7, &

where & = max (O, 1 — vy ('wT:cz- — b))

margin

* This can be represented as a QP, too
 Thus, SVM is a QP problem

Image: Josephine Sullivan
77

Semidefinite programming (SDP)

* Objective function : minimize

fo(®) =c'=

e Constraint functions : subject to

p
Fy + ZCIJZFZ =0
i—1

>~ 0 represents that the matrix is positive semidefinite (i.e. non-negative eigenvalues)

78

QP and SDP represent non-linear decision boundary

SDP example from L. Vandenberghe and S. Boyd (1996) SIAM Review 38(1): 49-95.
79

Alternating Direction Method of Multipliers (ADMM)

* Consider convex functions f and g in the optimization problem.
e Minimize f(x) + g(2)
e Subjectto Ax + Bz = ¢

* The problem assumes two sets of variables that are separable.
 The augmented Lagrangian is defined as

Ly(®,2,v) = f(@) + 9(2) + v(Az + Bz — ¢) + - || Az + Bz — |}

80

Iterative update steps for ADMM
x-minimization
2" < arg min £, (x, 2", V")

Z-minimization

k+1

2"« argmin £, (2", z, V")
<

dual update

e SR 0 (AxFtl L B2ht1 c)

81

Why ADMM?

e Because ADMM is VERY USEFUL!

* By separating objective function and constraints into two different
functions, ADMM can be used to solve a wide variety of problems.

* Example problems solvable by ADMM
* LASSO
* Group LASSO
Linear programming
Quadratic programming
Non-negative matrix factorization (NMF)
and more...

Today : Summary

* Generic optimization methods
* Golden section search
* Brent’s methods
* Nelder-Mead algorithm
e Gradient descent algorithms
e Quasi-Newton methods (BFGS, L-BFGS-B)

* Specialized optimization methods
e E-M algorithm
e Simulated annealing

 Linear, Quadratic, and Semidefinite Programming
« ADMM

Important things not covered today

e Markov-Chain Monte Carlo (MCMC) algorithm
* Metropolis-Hasting algorithm

* Gibbs sampler

* Lagrangian

* Lagrangian duality

e Karush-Kuhn-Tucker (KKT) condition

* Dual ascent

* RMSprop

* Adam

* Dynamic programming

These are some keywords you may want to explore later on to learn more about optimization

Optimization: three key questions

1. How can | formulate the problem into an optimization problem?
* Articulate your problem in mathematical terms.
* In some cases, you may not even have realized that it is an optimization problem.

2. Dol know how to obtain a solution for the optimization problem?

* Having an objective function does not automatically solve the problem.
e Certain optimization problems are much harder than others.

3. Dol know what the time complexity of the method | chose is?

* |f you have big data, time complexity is one of the key factor to consider.
* The solution should be not only possible but also feasible to obtain.

