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What is optimization?
• From Merriam-Webster:
• (noun) an act, process, or methodology of making something (such as a design, 

system, or decision) as fully perfect, functional, or effective as possible.
• specifically : the mathematical procedures (such as finding the maximum of a 

function) involved in this

• A mathematical definition:
• Given 𝑓: 𝐴 → 𝑅, 

find 𝒙∗ ∈ 𝐴
such that 𝑓(𝒙) is minimized at 𝒙 = 𝒙∗
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(Note: maximization can be easily flipped to a minimization)



Numerical optimization : 
examples with closed-form solutions

• Unconstrained optimization
• 𝑓 𝑥 = 𝑥- + 2𝑥 + 2
• 𝑓 𝑥 = (𝑥 + 1)-+1 ≥ 1  (equality holds at 𝑥 = −1)

• Constrained optimization
• 𝑓 𝑥 = 𝑥- + 2𝑥 + 2, (𝑥 ≥ 0)
• 𝑓5 𝑥 = 2𝑥 + 2 > 0 when 𝑥 ≥ 0, so monotonically increasing.
• 𝑓 𝑥 is minimized at 𝑥 = 0, and 𝑓 𝑥 ≥ 2. 
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You are very lucky if your real-world optimization problem has a closed-form solution



Combinatorial optimization : an example 

Start

End

Manhattan Tourist Problem:
Find a path with 
the minimum total cost.
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Today, we will not cover
combinatorial optimization



Mathematical optimization problem

• Minimize the objective function
𝑓7(𝒙)

• subject to the constraints
𝑓8 𝒙 ≤ 𝑏8, 𝑖 ∈ {1,2,⋯ ,𝑚}

• where
• optimization variable 𝒙 = (𝑥@,⋯ , 𝑥A)
• objective function 𝑓7: ℝA → ℝ
• constraint function 𝑓8: ℝA → ℝ, 𝑖 ∈ {1,⋯ ,𝑚}
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Why study optimization?

• It is important to formulate what you want as an optimization problem.
(e.g. LASSO) Given 𝑋 ∈ ℝA×E, 𝒚 ∈ ℝA, and 𝜆 ≥ 0,  

We want to find 𝜷 ∈ ℝE that minimizes
𝑓 𝜷 = 𝒚 − 𝑋𝜷 - + 𝜆 𝜷 @ = 𝒚 − 𝑋𝜷 I 𝒚 − 𝑋𝜷 + 𝜆J

8K@

E
𝛽8

• It is even more important find out how to solve the optimization problem.
• This may not be a fun activity for everybody, but useful for most of us.   
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Types of optimization problems

• By type of solutions
• Numerical optimization
• Combinatorial optimization

• By number of variables
• Single-dimensional optimization
• Multi-dimensional optimization

• By randomness in algorithm
• Deterministic optimization
• Stochastic optimization

• By type of objective function
• Convex optimization
• Non-convex optimization

• By constraints
• Constrained optimization
• Unconstrained optimization

• By optimality of the solution
• Local optimization
• Global optimization
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Optimization: three key questions 

1. How can I formulate the problem into an optimization problem?
• Articulate your problem in mathematical terms.
• In some cases, you may not even have realized that it is an optimization problem.

2. Do I know how to obtain a solution for the optimization problem?
• Having an objective function does not automatically solve the problem.
• Certain optimization problems are much harder than others.

3. Do I know what the time complexity of the method I chose is?
• If you have big data, time complexity is one of the key factor to consider.
• The solution should be not only possible but also feasible to obtain. 
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Example: maximum likelihood estimation (MLE)
• Likelihood function
• 𝒙 : observed data
• 𝜽 : model parameter
• 𝑓(𝑿 = 𝒙; 𝜽) : probability density (mass) function
• 𝐿 𝜽; 𝒙 = 𝑓(𝒙; 𝜽) : likelihood function

• Maximum likelihood estimation (MLE) : find
Q𝜽 = argmax𝜽 𝐿 𝜽; 𝒙

• MLE is a useful across many areas of statistical inference.

• MLE is an instance of mathematical optimization problems 9



Example: MLE in logistic regression

• Given
• 𝒚 ∈ −1,1 A

• 𝑋 ∈ ℝA×E
• 𝜷 ∈ ℝE

• Likelihood function
𝐿 𝜷 =W

8K@

A
Pr 𝑦8 = 1; 𝑋, 𝜷 =W

8K@

A 1
1 + exp(−𝑦8𝒙𝒊𝑻𝜷)

• Log-likelihood function

𝑙 𝜷 = log 𝐿 𝜷 =J
8K@

A
log

1
1 + exp(−𝑦8𝒙𝒊𝑻𝜷)

This is an unconstrained optimization problem
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A simple 1-dimensional case 
• Suppose that 𝑝 = 1, then the log-likelihood function becomes 

• Maximum likelihood estimate (MLE) is

𝑙 𝛽 = log 𝐿 𝛽 =J
8K@

A
log

1
1 + exp(−𝑦8𝑥8𝛽)

b𝛽 = argmaxc J
8K@

A
log

1
1 + exp(−𝑦8𝑥8𝛽)

Q. Does a close-form solution exist?
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Example : 1-d MLE in logistic regression

See the examples in the R markdown file in Canvas
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Example data (jittered)
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Likelihood function

𝑙 𝛽 = log 𝐿 𝛽 =J
8K@

A
log

1
1 + exp(−𝑦8𝑥8𝛽)
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Visualization of the likelihood function
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Single-dimensional optimization problem
• Given
• 𝑓(𝑥) : the objective function
• We do not know how the function is shaped a priori.
• Evaluation of 𝑓(𝑥) could be expensive – needs as few evaluations as possible.

• Want
• Find 𝑥 that minimizes 𝑓(𝑥)
• How difficult can this be?
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Single-dimensional optimization could be tricky

Image: Press WH, Teukosky SA, Vetterling W, Flannery BP (2007) Numerical Recipes, 3rd Edition, Cambridge University Press
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Local vs. Global optimization

• Globally optimal point: 𝒙 is globally optimal if
𝑓7 𝒙 = inf𝒛∈𝒳𝑓7 𝒛

where 𝒳 is a set of values that satisfy the contraints

• Locally optimal point: 𝒙 is locally optimal if there exists R > 0 such that
𝑓7 𝒙 = inf 𝒛i𝒙 jk, 𝒛∈𝒳𝑓7 𝒛
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Bracketing: from global to local optimization 
• The goal of bracketing is to find three points such that

𝑎 < 𝑏 < 𝑐
𝑓 𝑏 < 𝑓 𝑎
𝑓 𝑏 < 𝑓(𝑐)

• Once such 𝑎, 𝑏, 𝑐 are identified for a continuous function 𝑓 o , there should 
be at least one locally optimal point between 𝑎 and 𝑐.
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Golden section search
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Minimizing the worst-case damage

• The next interval will have length either 1 − 𝑤 or 𝑤 + 𝑧.
• Optimal condition must satisfy the following two conditions:
• 1 − 𝑤 = 𝑤 + 𝑧
• r
@is = 𝑤

• Solving the equations will lead to the golden ratio 𝑤 = ti u
-

= 0.38197.
• This will guarantee that the interval size will reduce by ~38% at each step.



Algorithms for single-dimensional optimization

• Golden section search
• At each iteration, the bracket size reduces by ~38%.
• Guaranteed convergence, but could be slow.

• Parabola method
• Approximate a quadratic function based on 3 points.
• Often faster than golden search, but may not converge.

• Brent’s method
• Combination of parabola method and golden search.
• Most widely used method for single-dimensional optimization.
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Finding MLE using Brent’s method
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Multi-dimensional optimization
• More common type of optimization problems
• Many variables need to be estimated together.

• A LOT harder than single-dimensional optimization
• The search space is A LOT larger, especially for high-dimensions
• Checking for local minimum is more complicated.
• Checking for global minimum is even more complicated.

• A LOT more diversity in the available algorithms.
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Ways to optimize multi-dimensional function

• If only the objective function is available (no gradient or Hessian)
• Nelder-Mead algorithm

• If the objective function and gradient are available
• Gradient descent (coordinate, batch, stochastic) algorithms
• Quasi-Newton methods : BFGS or L-BFGS-B algorithms

• If objective function, gradient, and Hessian are available
• Newton’s method

but Hessian is expensive to compute for high-dimensions, so not very common.

These are generic methods, and many other context-specific methods are available 25



Nelder-Mead algorithm
• A general-purpose multi-dimensional minimization method. 
• Published in 1965, and cited >29,000 times to date.
• Simple to use - does not require derivatives.
• Works quite well in practice for low (e.g. several) dimensions.
• No theoretical guarantee for convergence (either local or global)
• Typically slower than other methods that leverage gradient.
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Basic operations of Nelder-Mead algorithm

Press WH, Teukosky SA, Vetterling W, Flannery BP (2007) Numerical Recipes, 3rd Edition, Cambridge University Press27



Illustration
of
Nelder-Mead
Algorithm

https://userpages.umbc.edu/~rostamia/2017-09-math625/images/nelder-mead.gif
28

https://userpages.umbc.edu/~rostamia/2017-09-math625/images/nelder-mead.gif


Example of multi-dimensional optimization
• Multi-dimensional logistic regression

• A straightforward extension of the 1-d logistic regression

𝑙 𝜷 = log 𝐿 𝜷 =J
8K@

A
log

1
1 + exp(−𝑦8𝒙𝒊𝑻𝜷)
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Example R code
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Example of simulated data
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Likelihood function

Null likelihood

Likelihood at the true parameter
Q. Is this the MLE? 32



Nelder-Mead is implemented in optim()
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Logistic MLE using Nelder-Mead algorithm
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Optimization with gradients
• Gradient is a multivariate generalization of derivative

• For differentiable objective function, gradient is useful..
• … to approximate the “slope” of the objective function.
• … to reduce the number of function evaluations.
• … to achieve better convergence properties.
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Coordinate descent algorithm

Image: Wikipedia

• Alternate each dimension for iterative 
update.

• Uses single-dimensional derivative to 
determine the direction and size of 
update.

• One of the simplest method.

• Does not work at all in some cases 
(where no improvement can be made 
using a single dimension).
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Gradient descent algorithm

https://en.wikipedia.org/wiki/Gradient_descent

• Also called steepest descent algorithm.

• Parameters are updated to the direction
proportional to the negative gradient
of the objective function

• Choosing the step size is one of the
tricky part in implementation
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Stochastic gradient descent (SGD)
• For very large data, calculating gradient across all data can be time-consuming.
• In many cases, the object-function can be separated into a summation form

• Then, the gradient can also be represented into a summation form.

• Stochastic gradient descent compute gradient from partial data (single 
observation or mini-batch) to expedite the speed of update at the expense of 
smaller improvement at each update.
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Types of gradient descent algorithms

• Batch gradient descent
• Use all observations to compute gradient
• Takes longer to compute, but gives a right direction to update parameters.

• Stochastic gradient descent
• Update the parameters using a single-sample gradient
• Gradient can be computed faster, but update can go in a wrong direction.

• Mini-batch gradient descent
• Compute gradient using a small batch of samples.
• Gradient is more informative than using only a single sample, at the expense of 

increased cost of computation.
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Stochastic gradient descent - Illustration

Image by Imad Dabbura from towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3

https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3


Benefits of stochastic gradient descent

Bottou L, Curtis FE, Nocedal J (2018). Optimization methods for large-scale machine learning. SIAM Review, 60(2), 223-311.

• SGD typically converges much
faster than batch update
algorithms per accessed data
points.

• SGD converges fast at the 
beginning, but may converge 
slowly at the end.



Stochastic gradient descent for logistic regression

42
Example from R. Tibsharani’s lecture



• Gradient descent – uses gradient to determine the next point

• Newton’s method – uses (expensive) 2nd-order information.

• Quasi-Newton methods approximate Hessian using gradients 

Quasi-Newton methods

where H are iteratively updated using previous gradients 43



Broygen-Fletcher-Goldfarb-Shanno (BFGS) update.

• BFGS algorithm
• Let                                          and
• The BFGS update approximate Hessian using the following rule

• L-BFGS-B algorithm 
Extended version of BFGS with two additional features:
• Limited memory – compute H more rapidly with less memory.
• Box constrains – Allow box-like constraints in the optimization problem. 
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BFGS and L-BFGS-B are implemented in optim()
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Gradient of logistic objective function

𝑓7 𝜷 = − 𝑙 𝜷 =J
8K@

A
log 1 + exp(−𝑦8𝒙𝒊𝑻𝜷)

∇𝑓7 𝜷 =J
8K@

A −𝑦8𝒙𝒊𝑻exp(−𝑦8𝒙𝒊𝑻𝜷)
1 + exp(−𝑦8𝒙𝒊𝑻𝜷)
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Running L-BFGS-B Algorithm
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So far we have learned…

• Single-dimensional optimization
• Golden section search
• Brent’s method

• Multi-dimensional optimization
• Nelder-Mead algorithm
• Coordinate gradient descent
• Batch (steepest) gradient descent
• Stochastic gradient descent
• Quasi-Newton methods : BFGS, L-BFGS-B

These are “generic” algorithms that do not depend on properties of the objective function
48



Specialized optimization methods
• There are many optimization methods that are specialized for particular 

subset of optimization problems.

• These methods exploit the intrinsic structure of the problems to more 
accurately and/or efficiently solve the optimization problems.

• Some specialized optimization methods are still quite general (i.e. 
applicable to a wide range of similar problems), while some others are 
tailored only to a particular instance of problem.  
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Some examples of specialized optimization
• For logistic regression, the standard optimization used is 

“Iteratively Reweighted Least Squares” (IRWS)

• For LASSO, where we optimizes the following function

the “least-angle regression” (LARS) is the algorithm used often.

𝑓 𝜷 = 𝒚 − 𝑋𝜷 - + 𝜆 𝜷 @ = 𝒚 − 𝑋𝜷 I 𝒚 − 𝑋𝜷 + 𝜆J
8K@

A
𝛽8

We won’t have time to look into the details of these methods, but there are reasons
why these algorithms are well-suited for these particular problems. 
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Some widely used optimization methods

• Expectation-Maximization (E-M) algorithm
• Simulated annealing
• Linear programming
• Quadratic programming
• Semidefinite programming
• Alternating direction method of multipliers (ADMM)
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E-M Algorithm : Overview
• Iterative algorithm for solving MLE problems with missing data

• E-M algorithm is particularly useful when..
• There are missing (unobserved) data
• The MLE is analytically intractable if missing data is unobserved
• The MLE would analytically be tractible if missing data was observed.

• A popular and highly cited (>55,000 times) method. 
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The basic E-M strategy

• Types of data
• Complete data (𝒙, 𝒛) : what we would like to have
• Observed data 𝒙 : individual observations
• Missing data 𝒛 : hidden/missing values

• The E-M algorithm overview
1. Initialize the parameter
2. E-step : calculate the distribution of hidden value using current parameter
3. M-step : update the parameter             to maximize the expected log-likelihood.
4. Repeat step 2-3 until convergence. 
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• E-step

• M-step

Th Expectation-Maximization algorithm
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Key property of the E-M algorithm

• The expected log-likelihood function satisfies that

• The M-step maximizes the surrogate function, 
making the likelihood always increase at each 
iteration.

Do CB and Batzoglou S (2008) Nat Biotechnol 26(8):897-89
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Example – Gaussian mixture model
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Gaussian mixture model with true labels
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Labels inferred from the E-M algorithm
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Two dimensional Gaussian mixture
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2D Gaussian mixture with true labels
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Inferred labels with E-M algorithm
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Challenges in hill-climbing methods

Image : Antal B and Haidu A (2011) Acta Cybernetica, 20(5):5-15 62



Overcoming the challenge : chaotic jump

Image : Antal B and Haidu A (2011) Acta Cybernetica, 20(5):5-15 63



Annealing

• Annealing is a manner in which crystals are formed.
• Gradual cooling of liquid can form crystal lattice

Bargi A. et al. (2010) Nat Chem 2:581-587
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Simulated annealing
• Concept
• Numerical optimization procedure which aims for global optimization.
• Use analogy of thermodynamics

• Key idea
• Incorporates temperature parameter into the optimization procedure
• At high temperature, explore the parameter space
• At low temperature, restrict exploration.
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Updates in simulated annealing

• Given a temperature, assume a probability proportional to Boltzmann factor

• When updating parameters from       to      , accept the change probabilistically

• New parameter must be chosen based on a random procedure.
• If the solution was improved, always accept the new parameter.
• Otherwise, if T is high, the new parameter will be accepted with relatively often.
• When T is low, the new parameter will be very rarely accepted.
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Illustration of simulated annealing procedure

Image by Max Dama67



Simulated annealing : highlights

• It is a global optimization method
• Overcomes disadvantages in hilling-climbing approach
• Useful to avoid being trapped at local optima for high-dimensional problems

• It is a Markov-chain Monte-Carlo (MCMC) method
• Randomly updates the the parameter.
• Probabilistically aceept the new parameter based on Metropolis-Hasting (MH) procedure.

• Useful in solving a variety of optimization problems
• ..including combinatorial optimization such as the Traveling Salesman Problem
• implemented in optim() function in R
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Convex optimization

• Convex optimization is a subset of 
mathematical optimization problem.
• Often there is much easier solution than 

non-convex optimization problems. 
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Example : Diet Problem

Doctor’s recommendation on diet restriction
• No more than 13,800mg of fat consumption
• At least 600mg, 300mg, 500mg of vitamin X, Y, Z consumptions.
Goal is to come up with most cost-effective diet plan
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Formulating the problem mathematically

• Objective function

• Constraint functions
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Linear programming (LP)
• Optimization variable

• Objective function : minimize

• Constraint functions : subject to
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Simplex algorithm for LP

• Optimal point occurs in one of the vertices of the simplex
• boot::simplex() in R can solve this problem efficiently

Image: Wikipedia 73



Quadratic programming (QP)

• Optimization variable

• Objective function : minimize

• Constraint functions : subject to
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Optimally separating hyperplane

Image: Josephine Sullivan
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Maximizing the margin of hyperplane

This is a quadratic
programming (QP) problem
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Support Vector Machine (SVM)
• To allow non-separable

hyperplane, define a hinge loss

• Objective function for SVM

Image: Josephine Sullivan

• This can be represented as a QP, too
• Thus, SVM is a QP problem
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Semidefinite programming (SDP)
• Objective function : minimize

• Constraint functions : subject to

represents that the matrix is positive semidefinite (i.e. non-negative eigenvalues)
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QP and SDP represent non-linear decision boundary 

SDP example from L. Vandenberghe and S. Boyd (1996) SIAM Review 38(1): 49-95.
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Alternating Direction Method of Multipliers (ADMM)

• Consider convex functions f and g in the optimization problem.

• The problem assumes two sets of variables that are separable.
• The augmented Lagrangian is defined as
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Iterative update steps for ADMM
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Why ADMM?

• Because ADMM is VERY USEFUL!

• By separating objective function and constraints into two different 
functions, ADMM can be used to solve a wide variety of problems.

• Example problems solvable by ADMM
• LASSO
• Group LASSO
• Linear programming
• Quadratic programming
• Non-negative matrix factorization (NMF)
• and more…
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Today : Summary

• Generic optimization methods
• Golden section search
• Brent’s methods
• Nelder-Mead algorithm
• Gradient descent algorithms
• Quasi-Newton methods (BFGS, L-BFGS-B)

• Specialized optimization methods
• E-M algorithm
• Simulated annealing
• Linear, Quadratic, and Semidefinite Programming
• ADMM
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Important things not covered today
• Markov-Chain Monte Carlo (MCMC) algorithm
• Metropolis-Hasting algorithm
• Gibbs sampler
• Lagrangian
• Lagrangian duality
• Karush-Kuhn-Tucker (KKT) condition
• Dual ascent
• RMSprop
• Adam
• Dynamic programming

These are some keywords you may want to explore later on to learn more about optimization
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Optimization: three key questions 

1. How can I formulate the problem into an optimization problem?
• Articulate your problem in mathematical terms.
• In some cases, you may not even have realized that it is an optimization problem.

2. Do I know how to obtain a solution for the optimization problem?
• Having an objective function does not automatically solve the problem.
• Certain optimization problems are much harder than others.

3. Do I know what the time complexity of the method I chose is?
• If you have big data, time complexity is one of the key factor to consider.
• The solution should be not only possible but also feasible to obtain. 
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