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Modeling Data

I
Types of outcomes

I Continuous, binary, counts, ...
I

Dependence structure of outcomes

I Independent observations
I Correlated observations, repeated measures

I
Number of covariates, potential confounders

I Controlling for confounders that could lead to spurious results
I

Sample size

These factors will determine the appropriate statistical model to use
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What is logistic regression?

I
Linear regression is the type of regression we use for a

continuous, normally distributed response variable

I
Logistic regression is the type of regression we use for a binary

response variable that follows a Bernoulli distribution

Let us review:

I
Bernoulli Distribution

I
Linear Regression
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Review of Bernoulli Distribution

I Y ≥ Bernoulli(p) takes values in {0, 1},

I e.g. a coin toss
I Y = 1 for a success, Y = 0 for failure,

I p = probability of success, i.e. p = P (Y = 1),

I e.g. p = 1
2 = P (heads)

I
Mean is p, Variance is p(1 ≠ p).

Bernoulli probability density function (pdf):

f(y; p) =

I
1 ≠ p for y = 0

p for y = 1

= py

(1 ≠ p)

1≠y, y œ {0, 1}

4 / 39



Review of Linear Regression

I
When do we use linear regression?

1. Linear relationship between

outcome and variable

2. Independence of outcomes

3. Constant Normally

distributed errors

(Homoscedasticity)

Model: Y
i

= —
0

+ —
1

X
i

+ ‘
i

,

‘
i

≥ N (0, ‡2
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i

|X
i
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0
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1

X
i
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i
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I
How can this model break down?
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Modeling binary outcomes with linear regression

Fitting a linear regression model

on a binary outcome Y :

I Y
i

|X
i

≥ Bernoulli(p
X

i

),

I E(Y
i

) = —
0

+ —
1

X
i

= ‚p
X

i

.

Problems?

I
Linear relationship between X
and Y ?

I
Normally distributed errors?

I
Constant variance of Y ?

I
Is ‚p guaranteed to be in [0, 1]?
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Why can’t we use linear regression for binary outcomes?

I
The relationship between X and Y is not linear.

I
The response Y is not normally distributed.

I
The variance of a Bernoulli random variable depends on its

expected value p
X

.

I
Fitted value of Y may not be 0 or 1, since linear models produce

fitted values in (≠Œ, +Œ)
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A regression model for binary data

I
Instead of modeling Y , model

P (Y = 1|X), i.e. probability

that Y = 1 conditional on

covariates.

I
Use a function that constrains

probabilities between 0 and 1.
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Logistic regression model

I
Let Y be a binary outcome and X a covariate/predictor.

I
We are interested in modeling p

x

= P (Y = 1|X = x), i.e. the

probability of a success for the covariate value of X = x.

Define the logistic regression model as

logit(p
X

) = log

3
p

X

1 ≠ p
X

4
= —

0

+ —
1

X

I
log

1
p

X

1≠p

X

2
is called the logit function

I p
X

=

e

—0+—1X

1+e

—0+—1X

I
lim

xæ≠Œ
e

x

1+e

x

= 0 and lim

xæŒ
e

x

1+e

x

= 1, so 0 Æ p
x

Æ 1.
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Likelihood equations for logistic regression

I
Assume Y

i

|X
i

≥ Bernoulli(p
X

i

) and

f(y
i

|p
x

i

) = py

i

x

i

◊ (1 ≠ p
x

i

)

1≠y

i

I
Binomial likelihood: L(p

x

|Y, X) =

Nr
i=1

py

i

x

i

(1 ≠ p
x

i

)

1≠y

i

I
Binomial log-likelihood:

¸(p
x

|Y, X) =

Nq
i=1

Ó
y

i

log

1
p

x

i

1≠p

x

i

2
+ log(1 ≠ p

x

i

)

Ô

I
Logistic regression log-likelihood:

¸(—|X, Y ) =

Nq
i=1

)
y

i

(—
0

+ —
1

x
i

) ≠ log(1 + e—0+—1x

i

)

*

I
No closed form solution for Maximum Likelihood Estimates of —
values.

I
Numerical maximization techniques required.
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Logistic regression terminology

Let p be the probability of success. Recall that

logit(p
X

) = log

1
p

X

1≠p

X

2
= —

0

+ —
1

X.

I
Then

p

X

1≠p

X

is called the odds of success,

I
log

1
p

X

1≠p

X

2
is called the log odds of success.

Odds 

Log 
Odds 

Probability of Success (p) 
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Another motivation for logistic regression

I
Since p œ [0, 1], the log odds is log[p/(1 ≠ p)] œ (≠Œ, Œ).

I
So while linear regression estimates anything in (≠Œ, +Œ),

I
logistic regression estimates a proportion in [0, 1].
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Review of probabilities and odds

Measure Min Max Name

P (Y = 1) 0 1 “probability”

P (Y =1)

1≠P (Y =1)

0 Œ “odds”

log

Ë
P (Y =1)

1≠P (Y =1)

È
≠Œ Œ “log-odds” or “logit”

I
The odds of an event are defined as

odds(Y = 1) =

P (Y = 1)

P (Y = 0)

=

P (Y = 1)

1 ≠ P (Y = 1)

=

p

1 ≠ p

∆ p =

odds(Y = 1)

1 + odds(Y = 1)

.
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Review of odds ratio

Outcome status

+ ≠

Exposure status

+ a b

≠ c d

OR =

Odds of being a case given exposed

Odds of being a case given unexposed

=

a

a+b

/ b

a+b

c

c+d

/ d

c+d

=

a/c

b/d
=

ad

bc
.
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Review of odds ratio

I
Odds Ratios (OR) can be useful for comparisons.

I
Suppose we have a trial to see if an intervention T reduces

mortality, compared to a placebo, in patients with high

cholesterol. The odds ratio is

OR =

odds(death|intervention T)

odds(death|placebo)

I
The OR describes the benefits of intervention T:

I OR< 1: the intervention is better than the placebo since
odds(death|intervention T) < odds(death|placebo)

I OR= 1: there is no di�erence between the intervention and the
placebo

I OR> 1: the intervention is worse than the placebo since
odds(death|intervention T) > odds(death|placebo)
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Interpretation of logistic regression parameters

log

3
p

X

1 ≠ p
X

4
= —

0

+ —
1

X

I —
0

is the log of the odds of success at zero values for all covariates.

I e

—0
1+e

—0 is the probability of success at zero values for all covariates

I
Interpretation of

e

—0
1+e

—0 depends on the sampling of the dataset

I Population cohort: disease prevalence at X = x

I Case-control: ratio of cases to controls at X = x
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Interpretation of logistic regression parameters

Slope —
1

is the increase in the log odds ratio associated with a

one-unit increase in X:

—
1

= (—
0

+ —
1

(X + 1)) ≠ (—
0

+ —
1

X)

= log

3
p

X+1

1 + p
X+1

4
≠ log

3
p

X

1 ≠ p
X

4
= log

Y
]

[

1
p

X+1
1≠p

X+1

2

1
p

X

1≠p

X

2

Z
^

\

and e—1
=OR!.

I
If —

1

= 0, there is no association between changes in X and

changes in success probability (OR= 1).

I
If —

1

> 0, there is a positive association between X and p
(OR> 1).

I
If —

1

< 0, there is a negative association between X and p
(OR< 1).

Interpretation of slope —
1

is the same regardless of sampling.
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Interpretation odds ratios in logistic regression

I
OR> 1: positive relationship: as X increases, the probability of

Y increases; exposure (X = 1) associated with higher odds of

outcome.

I
OR< 1: negative relationship: as X increases, probability of Y
decreases; exposure (X = 1) associated with lower odds of

outcome.

I
OR= 1: no association; exposure (X = 1) does not a�ect odds of

outcome.

In logistic regression, we test null hypotheses of the form H
0

: —
1

= 0

which corresponds to OR= 1.
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Logistic regression terminology

I
OR is the ratio of the

odds for di�erence

success probabilities:

1
p1

1≠p1

2

1
p2

1≠p2

2

I
OR= 1 when p

1

= p
2

.

I
Interpretation of odds

ratios is di�cult!

Probability of Success (p1) 

Solid Lines are Odds Ratios, Dashed Lines are Log Odds Ratios 

OR=1 
Log(OR)=0 
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Multiple logistic regression
Consider a multiple logistic regression model:

log

3
p

1 ≠ p

4
= —

0

+ —
1

X
1

+ —
2

X
2

I
Let X

1

be a continuous variable, X
2

an indicator variable (e.g.

treatment or group).

I
Set —

0

= ≠0.5, —
1

= 0.7, —
2

= 2.5.
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Data example: CHD events

Data from Western Collaborative Group Study (WCGS).

For this example, we are interested in the outcome

Y =

I
1 if develops CHD

0 if no CHD

1. How likely is a person to develop coronary heart disease (CHD)?

2. Is hypertension associated with CHD events?

3. Is age associated with CHD events?

4. Does weight confound the association between hypertension and

CHD events?

5. Is there a di�erential e�ect of CHD events for those with and

without hypertension depending on weight?
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How likely is a person to develop CHD?

I
The WCGS was a prospective cohort study of 3524 men aged

39 ≠ 59 and employed in the San Francisco Bay or Los Angeles

areas enrolled in 1960 and 1961.

I
Follow-up for CHD incidence was terminated in 1969.

I
3154 men were CHD free at baseline.

I
275 men developed CHD during the study.

I
The estimated probability a person in WCGS develops CHD is

257/3154 = 8.1%.

I
This is an unadjusted estimate that does not account for other

risk factors.

I
How do we use logistic regression to determine factors that

increase risk for CHD?
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Getting ready to use R

Make sure you have the package epitools installed.

# install.packages("epitools")

library(epitools)
data(wcgs)

## Can get information on the dataset:

str(wcgs)

## Define hypertension as systolic BP > 140 or diastolic BP > 80:

wcgs$HT <- as.numeric(wcgs$sbp0>140 | wcgs$dbp0>90)
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Is hypertension associated with CHD events?

The OR can be obtained from the 2x2 table:

table_2by2 <- data.frame(
Hypertensive=c("No","Yes"),
"No CHD event"=c(sum(wcgs$chd69==0 & wcgs$HT==0),

sum(wcgs$chd69==0 & wcgs$HT==1)),
"CHD event"=c(sum(wcgs$chd69==1 & wcgs$HT==0),

sum(wcgs$chd69==1 & wcgs$HT==1)),
check.names=FALSE)

Hypertensive No CHD event CHD event

No 2312 173

Yes 585 84

OR = (2312 ◊ 84)/(585 ◊ 173) = 1.92.
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The OR can also be obtained from the logistic regression model:

logit [P (CHD)] = log

5
P (CHD)

1 ≠ P (CHD)

6
= —

0

+ —
1

◊ hypertension.

logit_HT <- glm(chd69 ˜ HT, data = wcgs, family = "binomial")
coefficients(summary(logit_HT))

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.5925766 0.07882162 -32.891693 2.889272e-237
## HT 0.6517816 0.14080842 4.628854 3.676954e-06

OR from logistic regression is the same as the 2x2 table!

exp(—
1

) = exp (0.6517816) = 1.92
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I
The e�ect of HT is significant (p = 3.68 ◊ 10

≠6

)

I
The odds of developing CHD is 1.92 times higher in

hypertensives than non-hypertensives; 95% C.I. (1.46, 2.53)
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Is age associated with CHD events?

logit [P (CHD)] = log

5
P (CHD)

1 ≠ P (CHD)

6
= —

0

+ —
1

◊ age.

logit_age <- glm(chd69 ˜ age0, data = wcgs, family = "binomial")
coefficients(summary(logit_age))

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.93951594 0.54931839 -10.812520 3.003058e-27
## age0 0.07442256 0.01130234 6.584705 4.557900e-11

I
Yes, CHD risk is significantly associated with increased age

(p = 4.56 ◊ 10

≠11

)

I
The OR = exp(0.0744) = 1.08; 95% C.I. (1.05, 1.1).

I
For a 1-year increase in age, the log odds of a CHD event

increases by 7.4%, or the odds of a CHD event increase by 1.08.
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What does the logistic model for age look like?

logit(CHD) = ≠5.94 + 0.07 ◊ age

P (CHD) =

exp [≠5.94 + 0.07 ◊ age]

1 + exp [≠5.94 + 0.07 ◊ age]

library(ggplot2)
wcgs$pred_age <-

predict(logit_age, data.frame(age0=wcgs$age0), type="resp")
ggplot(wcgs, aes(age0, chd69)) +

geom_point(position=position_jitter(h=0.01, w=0.01),
shape = 21, alpha = 0.5, size = 1) +

geom_line(aes(y = pred_age)) +
ggtitle("Age vs CHD with predicted curve") + xlab("Age") +
ylab("CHD event status") + theme_bw()
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Does weight confound the association between
hypertension and CHD events?

Recall that the OR for HT was 1.92 (the — value was 0.6518). Fit the

model logit(CHD) = —
0

+ —
1

HT + —
2

weight.

logit_weight <- glm(chd69 ˜ HT + weight0, data = wcgs,
family = "binomial")

coefficients(summary(logit_weight))

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.928507302 0.51403008 -7.642563 2.129397e-14
## HT 0.568375813 0.14480630 3.925077 8.670213e-05
## weight0 0.007898806 0.00297963 2.650935 8.026933e-03

Look at the change in coe�cient for HT between the unadjusted and

adjusted models:

I
(0.6518 ≠ 0.5684)/0.6518 = 12.8%.

I
Since the change in e�ect size is > 10%, we would consider

weight a confounder.
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Is there a di�erential e�ect of weight on CHD for those
with and without HT?

In other words, is there an interaction between weight and

hypertension?

Fit the model

logit[P (CHD)] = —
0

+ —
1

HT + —
2

weight + —
3

(HT ◊ weight).

logit_HTweight <- glm(chd69 ˜ HT + weight0 + HT:weight0, data = wcgs,
family = "binomial")

coefficients(summary(logit_HTweight))

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.82255032 0.671632476 -7.180341 6.953768e-13
## HT 2.82407466 1.096531902 2.575461 1.001067e-02
## weight0 0.01311598 0.003871862 3.387512 7.052961e-04
## HT:weight0 -0.01279195 0.006184812 -2.068285 3.861323e-02
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Interaction model interpretation

I
The interaction e�ect is significant (p = 0.0386).

I
Odds ratio for 1lb. increase in weight for those without

hypertension: exp(0.013116) = 1.01.

I
Odds ratio for 1lb. increase in weight for those with

hypertension: exp(0.013116 ≠ 0.012792) ¥ 1.

Plot of interaction model:

wcgs$pred_interaction <-
predict(logit_HTweight, data.frame(weight0=wcgs$weight0, HT=wcgs$HT),

type="resp")
ggplot(wcgs, aes(weight0, chd69, color=as.factor(HT))) +

geom_point(position=position_jitter(h=0.01, w=0.01),
shape = 21, alpha = 0.5, size = 1) +

geom_line(aes(y = pred_interaction, group=HT)) +
scale_colour_manual(name="HT status", values=c("red","blue")) +
ggtitle("Weight vs CHD with predicted curve") + xlab("Weight") +
ylab("CHD event status") + theme_bw()
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Plot of interaction model
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Plot of interaction model – interpretation

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.82255032 0.671632476 -7.180341 6.953768e-13
## HT 2.82407466 1.096531902 2.575461 1.001067e-02
## weight0 0.01311598 0.003871862 3.387512 7.052961e-04
## HT:weight0 -0.01279195 0.006184812 -2.068285 3.861323e-02

I
The e�ect of increasing weight on CHD risk is di�erent between

those with and without hypertension.

I
For those without hypertension, increase in weight leads to an

increase in CHD risk.

I
For those with hypertension, the risk of CHD is nearly constant

with respect to weight.
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Predicted probabilities

I
Fit model and obtain the estimated coe�cients.

I
Calculate predicted probability ‚p for each person depending on

their characteristics X:

‚p =

exp

1
„—

0

+

„—
1

X
2

1 + exp

1
„—

0

+

„—
1

X
2
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Predicted probability of CHD by weight

The model is logit[P (CHD)] = —
0

+ —
1

◊ weight.

logit_weight_noHT <- glm(chd69 ˜ weight0, data = wcgs,
family = "binomial")

coefficients(summary(logit_weight_noHT))

## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.21470593 0.51206319 -8.230832 1.859181e-16
## weight0 0.01042419 0.00291957 3.570455 3.563615e-04

Based on the model, the predicted probability for a person weighing

175 lbs is

P (CHD|175lbs) =

exp(≠4.2147059 + 0.0104242 ◊ 175)

1 + exp(≠4.2147059 + 0.0104242 ◊ 175)

= 0.0839 or 8.4%.
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Plot of predicted probability of CHD by weight
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Alternative models for binary outcomes

The logit function induces a

specific shape for the relationship

between the covariate X and the

probability of success

p = P (Y = 1|X).

Logit: log[p/(1 ≠ p)] = – + —X.

Probit: �

≠1

(p) = – + —X where �

is the Normal CDF.

Log-log: ≠ log[log(p)] = – + —X.

Logit 

Probit 
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Summary

I
Logistic regression models the log of the odds of an outcome.

I Used when the outcome is binary.
I

We interpret odds ratios (exponentiated coe�cients) from logistic

regression.

I
We can control for confounding factors and assess interactions in

logistic regression.

I
Many of the concepts that apply to multiple linear regression

continue to apply in logistic regression.
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