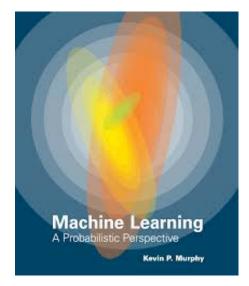
Machine Learning

"a set of methods that can automatically detect patterns in data, and then use the uncovered patterns to **predict** future data, or perform other kinds of decision making" – Murphy 2012

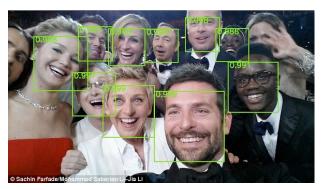


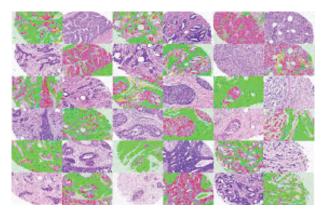
Classification

(one of the simplest types of prediction problems)

Goal: Learn to classify examples E.g.,

- Images (face recognition)
- Emails (spam filtering)
- Biological samples (tumor classification)



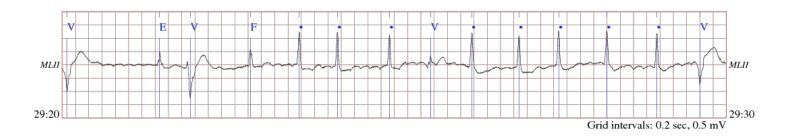


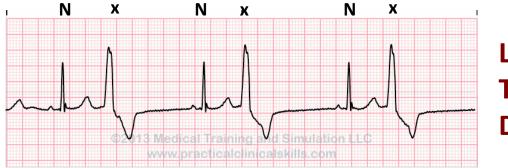
Heartbeat Classification

Motivation:

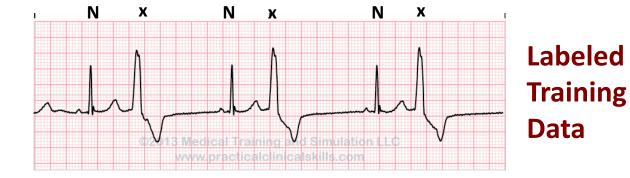
- The analysis of long-term ECG recordings can help physicians understand a patient's health.
- Labeling heartbeats can be an important step in this task; provides a level of abstraction.
- >100 000 beats in just 24 hours, so needs to be automated.

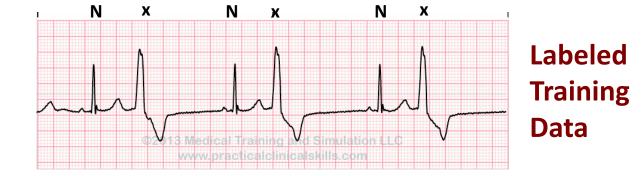
ECG Recording

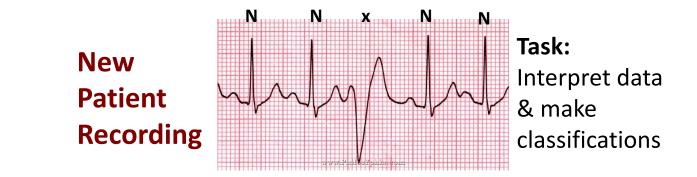




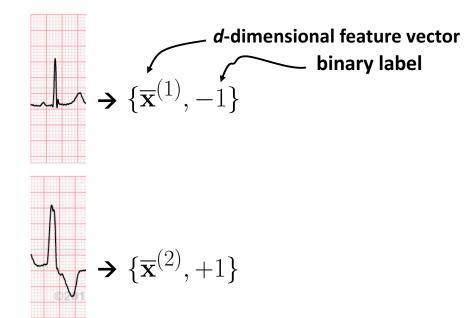
Labeled Training Data



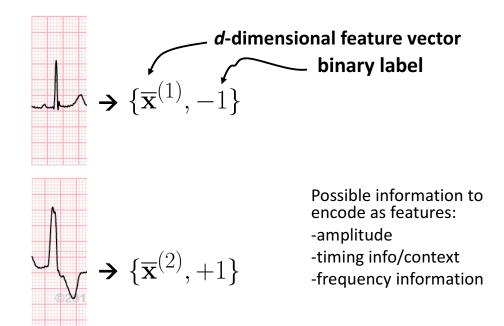




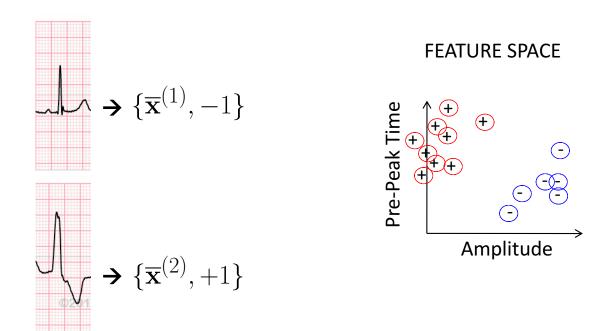
Labeled Feature Vector Representation



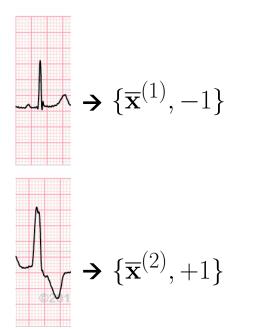
Labeled Feature Vector Representation

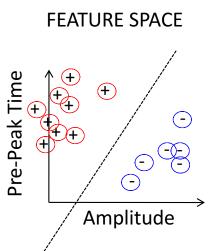


Labeled Feature Vector Representation



Labeled Feature Vector Representation





Learning goal: identify the decision boundary that separates the positive from negative examples.

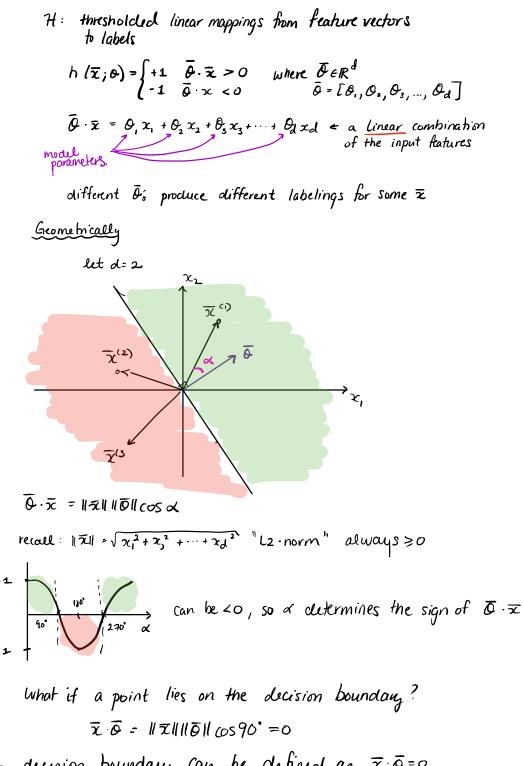
Supervised Learning

$$S_n = \{\bar{x}^{(i)}, y^{(i)}\}_{i=1}^n \quad \bar{x} \in \mathcal{X} \quad y \in \mathcal{Y}$$

Goal: learn a mapping from $\mathcal{X} \to \mathcal{Y}~$ that generalizes to yet unseen data.

Lecture #1. Classification as an ML problem · Feature vector $\overline{x} = [x_1, x_2, x_3, ..., x_d]^T$ $\overline{x} \in \mathbb{R}^d$ · Labels y \in {-1, +1} (binary) · Training set of examples $S_n = \{\overline{x}^{(i)}, y^{(i)}\}_{i=1}^n$ Classifier h: R^d → {-1,1} Select the best h from a set of possible classifiers Goal: It that would have the best chance of correctly classifying new examples The problem of select h from H -> solved by a learning algorithm typically an ophimization problem with respect to Sn Example: ECG data sampled at 360Hz sp sp sp sp sp $\bar{x} = [\chi_1, \chi_2, \chi_3, ..., \chi_{360}], \chi_k \in \{1, ..., 2048\}$ • training examples n=50 { $\overline{x}^{(i)}$, $y^{(i)}$ } • x_3 is different in every sample $y \in \{2, 1, +1\}$ Given the small # of training examples, we can trivially come up with a solution that maps each beat to the correct label just based on a look up table that use x_3 . But is this a good classifier? no, it overfits Generalization -> works well on unseen examples Problem too many choices in H, so many that we may end up choosing a classifier that does well on the specific training set but fails applied to new data Solution: constrain H, but can't be too small either or use may end up unable to classify Sn 'underfit' model selection: finding the right blalance

Linear Classification:



the decision boundary can be defined as $\overline{z} \cdot \overline{o} = 0$ in 2-dimensions $0, z_1 + 0, z_2 = 0 \Longrightarrow z_2 = -0, z_2$ \overline{o} defines $0, z_1 + 0, z_2 = 0 \Longrightarrow z_2 = -0, z_2$ \overline{o} defines $0, z_2 = -0, z_2$ \overline{o} defines \overline{o} \overline{o} defines \overline{o} \overline{o} \overline{c} \overline{c} How do we select \overline{O} ? Approach: find \overline{O} that works well on the training data $S_n = \{\overline{\mathcal{R}}^{(i)}, y^{(i)}\}$

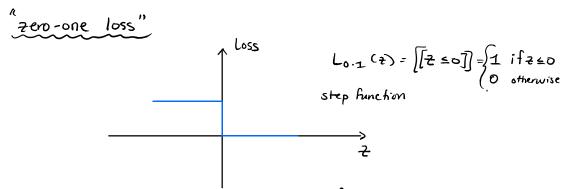
Minimize Training Error fraction of examples for which the classifier predicts the wrong label.

$$\mathcal{E}(\overline{O}) = \frac{1}{n} \sum_{i=1}^{n} \left[\left[y^{(i)} \neq h(\overline{x}^{(i)}; \Theta) \right] \right]$$

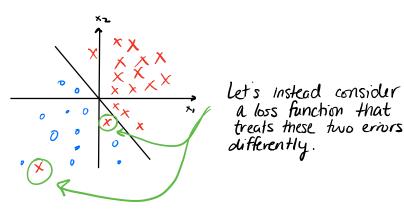
$$= \frac{1}{n} \sum_{i=1}^{n} \left[\left[y^{(i)}(\overline{O} \cdot \overline{x}^{(i)}) < O \right] \right]$$

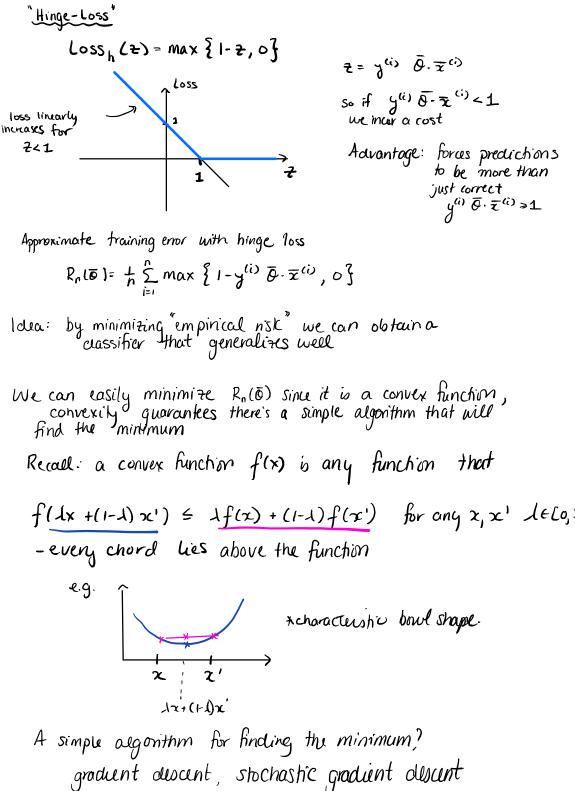
$$= \frac{1}{n} \sum_{i=1}^{n} \left[\left[y^{(i)}(\overline{O} \cdot \overline{x}^{(i)}) < O \right] \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[Loss \left(y^{(i)}(\overline{O} \cdot \overline{x}^{(i)}) \right) \right]$$



Unfortunately, a reasonable algorithm for finding \overline{O} that minimizes training error is not easy to solve in general. So we will consider algorithms that approximately minimize training error.





 $f(\lambda x + (1-\lambda)x') \leq \lambda f(x) + (1-\lambda)f(x')$ for any $x, x' \quad l \in [0,1]$

Gradient Descent We will use gradient descent to minimize $R_n(\bar{o})$ with hinge loss. * gradient points in the $\nabla_{\overline{o}} R_n(\overline{o}) = \begin{bmatrix} \frac{\partial R_n(\overline{o})}{\partial O_1}, & \frac{\partial R_n(\overline{o})}{\partial O_2}, & \frac{\partial R_n(\overline{o})}{\partial O_3}, & \frac{\partial R_n(\overline{o})}{\partial O_1} \end{bmatrix}$ increases I dea: take a small step in the opposite direction $\widehat{Q}^{(\kappa+i)} = \left. \overline{Q}^{(\kappa)} - \eta \nabla_{\overline{Q}} R_{n}(\overline{Q}) \right|_{\overline{Q} = \overline{Q}^{(\kappa)}}$ (step size or learning rate recall $R_n(\bar{o}) = \frac{1}{n} \sum_{i=1}^{n} \max \{1 - y^{(i)} \mid 0 \cdot \bar{z}^{(i)}, 0\}$ Commation involved in calculating gradient makes gradient descent slow Stochastic Gradient Descent I dea update o based on a small batch or a single point ā (*)= 0, K=0 while convergence criteria not met: randomly select i e {1,...,n} $\overline{O}^{(k+1)} = \overline{O}^{(k)} - \eta \nabla_{O} L_{OSS_{\mathcal{H}}} \left(g^{(i)} \overline{O} = \overline{z}^{(i)} \right) \Big|_{\overline{\mathcal{A}} = \overline{O}^{(k)}}$ Technicality: Rn (O) with hinge loss is piece wise linear what do we do? when differentiable -> no problem when subdifferentiable -> choose any gradient around the kink

Note: if
$$y^{(i)} \overline{O} \cdot \overline{x}^{(i)} > 1 \rightarrow loss is zero \in no update$$

if $y^{(i)} \overline{O} \cdot \overline{x}^{(i)} \leq 1$
then $\nabla_{\overline{O}} (coss (y^{(i)} \overline{O} \cdot \overline{x}^{(i)}))$
 $= \nabla_{\overline{O}} (1 - y^{(i)} (\overline{O} \cdot \overline{x}^{(i)}))$
 $= -y^{(i)} \overline{x}^{(i)}$

$$\therefore update rule: if $y^{(i)} \Theta \cdot \overline{x}^{(i)} \leq 1:$

$$\overline{O}^{(\kappa+i)} = \overline{O}^{(\kappa)} + \eta y^{(i)} \overline{z}^{(i)}$$$$

- Notes: (stochastic) gradient descent is a general algorithm that can be applied to non-convers functions
 - · SGD often gets closer to the solution more quickly than GD
 - with appropriate learning rate if P. (0) is convex well almost surely converge to minimum