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Introduction

• Note: We are not trying to find the “correct” model
• “All models are wrong, but some are useful” – George Box, 1979

• Want to find a “good” model (whatever that means)

Outcome, YPredictors, X 
(p of them)

MODEL



Introduction
• Inferential tools assume that the model was specified ahead of time. They are invalid if 

model was chosen based on data.
• E.g. in clinical trials, models usually specified ahead of time

• Generally, data-adaptive model selection often biases coefficients away from zero and 
residual variance towards zero. False positives and overfitting!

• Easiest solution is not to carry out model selection based on data, but often unavoidable



Overstretching your data to create a buzz…



Bee Careful of Stinging rebuke

So it fits the data…what about generalizability?



• Model selection strategy may depend on inferential objective:

• Prediction
• Estimation
• Hypothesis Testing
• Interpretation as risk factors
• Discovery of biomarkers
• Testing treatment effect
• Causal interpretation of a coefficient
• Identification of sets of important predictors/variables

• Model selection refers to both (1) model structure/type (2) included predictors



Cox Regression

Generalized Linear 
Models (GLMs)

- Logistic
- Poisson
- Negative Binomial
- Multinomial
- Proportional Odds

Quantile RegressionPenalized Regression

Multivariate 
Regression Models

e.g. Multistate models

CART (Trees)

Non-parametric 
Regression

Latent Variable 
Models

Principal 
Components 
Regression

Support Vector 
Machines

Unsupervised 
Learning

Discriminant AnalysisLinear Regression

DATA

Mixed Modeling



Which predictors to include?
Usually faced with problem of selecting subset of  p possible predictors to 
include in model.

• Have to balance conflicting objectives
• Predictive Accuracy versus Model Parsimony

• Ideal: determine single best subset of predictors 
• But no single definition of “best”

• Different algorithms will produce different "best" subsets
• Problems magnified by correlation among predictors



When model not pre-specified (like in your projects),
Get to know your data and your problem!

Clarify your scientific question
- What do you want to know?
- Why?

Some issues to consider
- How did you select your subjects?
- How were the data collected?
- Are observations independent?
- Potential sources of confounding

Predictors
- Distributions
- Relationships with other predictors
- Outliers
- Collinearity?
- Small categories?

Response Variables
- Distribution
- Associations with predictors
- Outliers

Understanding 
the problem

Getting to know your data

Some issues to consider
- Missing data? 
- Evidence of “strange” values



Prostate Cancer Example
• Prostate-Specific Antigen (PSA) is a protein produced by the prostate

• Values change over time
• Increase in PSA is a potential sign of prostate cancer

• Consider a dataset consisting of 4544 men newly-diagnosed with 
prostate cancer

• Measure their PSA at diagnosis along with a lot of other variables

• Goal: Identify factors related to PSA levels at prostate cancer 
diagnosis.

• Why are we studying this?
• Baseline PSA levels are related to prognosis in prostate cancer patients
• It is a convenient example
• You will have a better reason

https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.3816



Exploratory Analysis
• Quick look at our data



Exploratory Analysis
• Quick look at our data

• We will ignore these for now (complete case analysis)



Baseline PSA

Histogram of PSA
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Quantile-Quantile Plots
• Is log-PSA “normal-ish?”
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Associations with Predictors
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For example,

Boxplots of log(PSA) by Gleason Plot of log(PSA) by Age Plot of log(PSA) by Gland Volume



Linear Regression Model Fit
• Starting point: propose a “reasonable” model

• Are the model assumptions reasonably met?
• Residual diagnostics
• Knowledge about problem

• Are some subjects particularly “influential”?
• Leverage, Cook’s D

• Multicollinearity?
• Variance Inflation Factors (VIF) 
• partial correlations

• Which covariates should I include and how?
• Variable selection
• Knowledge about problem

Linear Regression of log(PSA):



Evaluating Standardized Residuals
• Linearity and constant variance (homoscedasticity)

Might improve non-constant variance and linearity issues by 
replacing gland volume with log(gland volume) in the model



Assessing Distributional Assumptions: QQ Plots
• Studentized residuals (“deleted” residuals standardized by their estimated standard 

errors) should be roughly t-distributed

• Does removing some outliers make sense?
• Normality “least important” of the assumptions (tail of distribution)
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Evaluating Multi-Collinearity
• Strongly correlated predictors         Inflated standard errors of parameters
• Compare standard errors to theoretical minimum standard errors
• The variance inflation factor for the kth predictor is 

where Rk
2 is the R2 value for a regression of the kth predictor on other 

predictors

Rule of Thumb:
VIF = 1: No correlation
VIF > 4: Investigate
VIF > 10: Serious issues



And iterate….
• Fixing one problem may make another problem more visible

Look at the data/think

Fit model/models

Model Diagnostics/more thinking

MODEL



Comparing Models
• Suppose you have multiple different models to choose from. How to decide?

• Lots of different methods to compare
• Based on your analytical goal
• Look at multiple different metrics

• Some popular model comparison methods
• P-value based methods (Forward/backward/stepwise selection)
• Adjusted R2, Likelihood Ratio testing
• Information criteria (AIC/BIC)
• Prediction/Cross-Validation
• ROC/AUC Analysis (next time)



P-Value Based Model Selection
• For nested models

• Want to select best subset of covariates
• Suppose we compare all possible subsets

• With 10 predictors, 210 or 1024 models to evaluate
• Compare models using some metric
• Computation can get tricky

• Leaps and Bounds 
• search through smaller model space

ad
jr2

(In
te
rc
ep
t)

gl
ea
so
n7

gl
ea
so
n7
.5

gl
ea
so
n8

gl
ea
so
n9

ag
e_
de
ca
de

ra
di
at
io
n

st
ag
eT
2

st
ag
eT
3

ca
uc
as
ia
n

pn
i

co
m
or
bi
di
ty
1

co
m
or
bi
di
ty
2

co
m
or
bi
di
ty
3+

lo
g(
gl
an
dv
ol
)

tx
ye

ar
gr

ou
pG

ro
up

 2
tx

ye
ar

gr
ou

pG
ro

up
 3

0.059
0.088
0.11
0.12
0.13
0.15
0.15
0.16
0.16
0.17
0.17
0.17
0.17
0.17
0.17
0.17



Backward Elimination
(1) Start with all p predictors.

(2) Remove the least significant predictor with p> pre-determined threshold=α*

(3) Re-fit model and go to step 2.

(4) Stop when p-values for all predictors retained in model are less than α*

• This threshold is typically not set at 5% but at 10-20%
• Popular alternative: use another metric such as AIC to choose what to remove



Forward Selection
(1) Start with intercept only model.

(2) For all potential predictors check p-values if they are added to the model, 
choose the one with lowest p-value (< α*).

(3) Continue until no new predictor can be added.

• Variables entered at earlier steps may lose significance as new predictors are 
added.



Stepwise Regression
• Each step a variable can be added or removed, bidirectional.
• This can be carried out in a number of ways.
• At each step of forward selection you check whether one or more predictors 

can be removed without increasing the residual sum of squares “too much”.

Drawbacks for these methods
• No guarantee of optimal model
• So much unaccounted-for multiple testing and the p-values are dubious at best
• No direct connection to the application context (prediction, estimation)
• Tends to overstate the effect of predictors retained in the model.
• Trouble with highly correlated predictors
• Sometimes predictors only significant in presence of other predictors



Application to PSA Modeling
• Methods may give slightly or very different model fits

Backward Elimination Forward Selection



Adjusted R2

R2 = corr(Y, Y-hat)2 for linear regression

Pseudo R2 measures for logistic regression, Cox and Snell R2, Nagelkerke R2

These values increase for larger models. Will pick the larger model.

Adjusted R2 penalizes for larger models.
Larger adjusted R2 is better!

R2 = 1�
Pn

i=1(yi � ŷi)2Pn
i=1(yi � ȳi)2

R2
adj = 1� (1�R2)(n� 1)

n� p� 1

Likelihood of model with only intercept: L(0) 
Likelihood evaluated at MLE: L(Beta-hat) 



Likelihood ratio testing
For nested models
Test whether some parameters can be set to zero:

(1) Fit both models: full model and reduced model
(2) Calculate likelihood using two estimated parameters

LRT = -2 loglik(beta-hatreduced) + 2 loglik(beta-hatfull)

LRT ~ Chi-squared with 
df = number of parameters being set to zero



AIC/BIC
• Measure goodness of fit

• Akaike Information Criterion, Bayes Information Criteria (smaller is better)

• -2*maximized log likelihood + 2p : AIC
• -2*maximized log likelihood+ p log(n) : BIC

• For small data sets a correction is needed for AIC, namely AICc

• BIC gives more parsimonious models 

• Often used to compare non-nested models

• Often good to use both and compare



Comparing Models for PSA Example
Compare 
(1) full model (2) model only including treatment and Gleason
(3) full model + extra nonsense covariates

Full Model Reduced Model Full Model + 
Extra

Predictors 16 5 19
Adjusted R2 0.17 0.12 0.16

AIC 3961.7 4079.8 3967.4
BIC 4063.5 4119.4 4086.2
MSE 0.377 0.401 0.378

LRT (Full vs. Reduced): p < 0.001 LRT (Extra vs. Full): p = 0.96



Prediction Measures
• Previously, we were evaluating how well the model fits our data
• Often, our goal is prediction! 

• Risk prediction models
• Precision medicine (e.g. which treatment will be best for the patient)
• Weather, stock market prices, etc. 

• Model that fits our data best may not predict future/new data the best

Some approaches to evaluate prediction abilities
• PRESS
• Mallow’s Cp
• Cross-Validation



PRESS
PRESS (prediction sum of squares)
(1) Remove the ith observation
(2) Re-fit model, re-estimate parameters
(3) Predict the ith observation with this model:        
(4) Calculate the residual. Do it for each observation (or a random subset). 

The model structure leading to smallest value of PRESS is preferred.
aka take-one-out cross validation

Prediction R2

Measures ability to predict future responses  



Mallow’s Cp
• Combines bias and variance of the predicted Y

• Helps strike a balance between including 
• enough covariates to avoid underfitting
• not too many that we over-fit the data

• Want values near p
• Cannot use to evaluate “full” model (Cp always = p)



Cross Validation/Data Splitting: 
Data divided into two parts: test data and training data. 

• Quantify how well model predicts test data set

• Provides a more realistic estimate of the predictive power of a model

• Test data could be part of your main dataset or external dataset

Training Data
- Exploratory Analysis
- Model selection
- Fitting the model

(Independent) Test Data
- Evaluating the model



K-fold Cross Validation

(1) Split the data into k subsets of equal size.
(2) Estimate/fit model based on all subsets except one.
(3) Use the left out subset to test your model by calculating a metric of your choice
(4) Average the metrics across the subsets to get an estimate of the cross-validation 
error.

DATA

TRAIN TEST

Fit the model Evaluate the model



Some cross-validation metrics



Comparing Models for PSA Example
Compare 
(1) full model (2) model only including treatment and Gleason
(3) full model + extra nonsense covariates

Full Model Reduced Model Full Model + 
Extra

Predictors 16 5 19
PRESS 807.8 852.1 809.9

Mallow’s Cp 13.2 134.78 -
10-Fold CV MSPE 0.382 0.403 0.383



General Guidelines
• Numerical criteria are useful, but don't rely too heavily on them

• A lot of model selection is judgment calls and balanced opposing forces

• All models are wrong, some less wrong.

• Be guided by background knowledge of relationships whenever possible
• Use information from the data AND your knowledge of the problem
• Model may fit well but unmeasured confounding/selection biases could 

create problems

• Follow Occam’s Razor principle: beauty in simplicity, parsimony, succinctness

• For GLMs, there are really two parts to model selection: link function & 
variable selection/modeling



Some Alternatives to 
“Standard” Regression Models



Penalized Regression Models



An Alternative Method: Penalization
• Rather than directly choosing a subset of predictors to include in the model, 

can use penalization methods
• Involve fitting full regression model with a penalty term
• Penalizes more complicated models 
• Add some bias in exchange for smaller standard errors
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(LASSO = Least Absolute Shrinkage 
and Selection Operator)



Tuning Parameter
• These methods all involve a tuning parameter, which controls how much you 

penalize.

• When the tuning parameter = 0, you get linear regression (ridge and LASSO)

• When the tuning parameter increases, parameters shrink toward zero

• Bias increases and variance decreases as the tuning parameter increases. 

• You will center and scale the predictors before doing applying penalization



LASSO shrinks parameters exactly to zero

Can touch the contour ellipse 
for the first time at a corner of 
the square, corresponding to a 
zero coefficient. 

In ridge there are no corners 
for the contour to hit, zero 
solutions will rarely result.



Ridge vs. LASSO in PSA Example
• Ridge versus LASSO in a sample dataset: note coefficients go to zero as      

lambda increases.
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Choosing a Tuning Parameter (PSA Example)
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Comparing Betas (PSA Example)
LASSO Ridge Standard GLM



More on Elastic Net (Zou and Hastie, 2005)
• LASSO does not do very well for a correlated set of predictors and when p 

much larger than n.

• If there is a group of predictors with high pairwise correlation, LASSO tends to 
select only one from the group and does not care which one it is.

• Prediction performance of LASSO not satisfactory with highly correlated set of 
predictors, and elastic net dominated by ridge.

• Ridge and LASSO are special cases



Elastic Net
• Combination of LASSO and Ridge penalties

• ENET beats LASSO in presence of collinearity in terms of prediction error
• Produces larger models than LASSO
• Produces sparse models with good prediction accuracy.



Estimating Standard Errors
• Penalization methods give coefficients but not standard errors

• Often, people will choose variables by LASSO and then 
go back to usual regression for inference. This is WRONG.

• Inference post-selection is hard for these penalization methods.

• There are methods in the literature for doing this
• Based on asymptotic results
• Based on bootstrap methods



Classification and Regression Trees (CART)



Machine Learning
• Completely different in flavor than classical parametric statistical inference

• Often borrows ideas from computer science and engineering
• uncertainty is de-emphasized
• more algorithmic than stochastic

• Learn from the data as opposed to cast the data into a structured model

• Goal is often prediction of new data



Supervised Learning Set-up
• Output measurement Y (also called class label, response, dependent variable, 

target).

• Vector of p input measurements X (aka predictors, covariates, regressors)

• We have training data (y1, x1),…. (yn, xn). These are observations (instances) 
of these measurements.

• On the basis of the training data we would like to
• Accurately predict unseen test cases
• Understand which inputs affect the output and how
• Assess the quality of our predictions and inferences



General Tree-based methods
• Prediction, classification and assessment of variable importance are critical 

questions in statistical inference.

• Recursive partitioning 
feature space (e.g. space spanned by all predictors)
is split into regions containing observations with 
similar response values.

Data

X > 0 (Leaf 2)X <= 0 (Leaf 1)

A Simple Regression Tree Example:

(1) Separates data into X>0, X<=0
(2) Separates data into X>5, 0<X<=5 X > 5 0<X<=5



Classification vs. Regression
• Classification Tree: When Y (outcome) is binary/unordered categorical

Want to assign each subject to a category Y=k
Terminal nodes result in classifications
Error assessment through misclassification cost.

• Regression Tree: Y is continuous or ordered discrete values. 
Prediction error measured by squared or relative absolute difference 
between observed and predicted values.



• Classification Tree: 3 class labels, two predictors, partition X space (feature 
space) into rectangular sets

Loh et al, 2011



• Regression Tree: Break up covariate space based on outcome mean
Y=bloodpbY=bloodpbY=bloodpbY=bloodpbY=bloodpbY=bloodpbY=bloodpbY=bloodpbY=bloodpbY=bloodpbY=bloodpbY=bloodpbY=bloodpb

trig < 412

calcium < 9.6

educ >= 0.5

sbp < 144

trig >= 106

sodium >= 2312

uric < 7.8

chol >= 164

serphos >= 2.5

serphos < 3.8

k >= 2077

trig >= 176 calcium >= 9.9

smokyrs < 7

waistcir >= 952

 >= 412

 >= 9.6

 < 0.5

 >= 144

 < 106

 < 2312

 >= 7.8

 < 164

 < 2.5

 >= 3.8

 < 2077

 < 176  < 9.9

 >= 7

 < 952

mean Y=5.9
n=602  100%

mean Y=5.9
n=595  99%

mean Y=5.2
n=314  52%

mean Y=4.6
n=182  30%

mean Y=5.9
n=132  22%

mean Y=5.3
n=99  16%

mean Y=4.6
n=66  11%

mean Y=6.7
n=33  5%

mean Y=5.9
n=26  4%

mean Y=10
n=7  1%

mean Y=7.8
n=33  5%

mean Y=6.8
n=26  4%

mean Y=11
n=7  1%

mean Y=6.6
n=281  47%

mean Y=6.5
n=274  46%

mean Y=6.2
n=249  41%

mean Y=5.9
n=223  37%

mean Y=5.6
n=202  34%

mean Y=4.5
n=55  9%

mean Y=6
n=147  24%

mean Y=8.5
n=21  3%

mean Y=5.8
n=12  2%

mean Y=12
n=9  1%

mean Y=8.9
n=26  4%

mean Y=6
n=9  1%

mean Y=10
n=17  3%

mean Y=9.2
n=25  4%

mean Y=7
n=17  3%

mean Y=14
n=8  1%

mean Y=13
n=7  1%

mean Y=12
n=7  1%



Classification and Regression Trees (CART)
• Breiman, Friedman, Olshen and Stone (1984), proposed this 30 years ago.

• Feature space recursively partitioned into rectangular areas such that 
observations with similar responses are grouped together.

• When you stop, you provide a common prediction for Y for subjects in the 
same group.



Distinction from GLMs (e.g. linear regression)
• Non-linear and even non-monotone associations are identified 
• Can capture complex variable relationships

Why use trees?
• often yield relatively simple and easy to comprehend models.
• frequently more accurate than parametric tools.
• method can sift through any number of variables.
• can separate relevant from irrelevant predictors.
• no/fewer prior assumptions on data structure
• “pretty” pictures can give insight into relative importance of variables



The rise of CART
Tons of publications, use in biomedical applications

Why?
• Availability of huge data sets requiring analysis
• Need to automate or accelerate and improve analysis process
• Rising interest in data mining
• New software and documentation make techniques accessible to researchers
• Next generation CART techniques appear to be even better than former



Growing a Tree
(1) Fix a predictor in X 
(2) Fix a cut-point for the predictor, c
(3) Compute measure of the quality of the split

• E.g. the impurity (homogeneity) of the daughter nodes/leaves
• E.g. test statistic for difference between daughter nodes 

(4) Repeat for all cut-points and all predictors
(5) Choose best split using some metric

• E.g. producing the best in terms of impurity, largest test statistic, 
(6) Repeat for each daughter node

Grow very large tree (believed to overfit the data)
Keep growing until you have nodes of a certain size or impurity

(Lots of variations)



Pruning the Tree
• Pruning

• Take the maximal tree (radically overfit).
• Prune branches from the large tree
• Pruning at a node means deleting all of its descendants/leaves

• Challenge is how to prune
• which branch to cut?
• Point is to find a subtree that is most “predictive” of the outcome and least 

vulnerable to the noise in the data

• Cost-complexity pruning
• External validation, internal cross-validation



Drawbacks of CART
Drawbacksa lot.
• MODEST ACCURACY

• current methods, such as ensemble classifiers often have 30% lower error rates than CART.

• INSTABILITY  
- if we change the data a little, tree picture can change a lot

Some alternatives
(ensemble methods)
• Bagging
• Boosting

<
Forest

Tree



Bagging and Boosting
Obtaining Bootstrap Sample:
- Sample with replacement from training data (y1, x1),…. (yn, xn) to get dataset 

of same size
- Do it B times to get B bootstrap samples of data

Bagging (Breiman 1996): Fit many large trees to bootstrap resampled versions 
of the training data, and classify by majority vote.

Boosting (Freund & Schapire 1996): Fit many large or small trees to reweighted 
versions of the training data. Classify by weighted majority vote.

• Weights related to prediction error for subject



Visualization of Bagging and Boosting

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/



Visualization of Bagging and Boosting

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

Generally, boosting > bagging > single tree



Random Forests and Out of Bag Prediction
• For each tree, generate a bootstrap sample of the data.
• The bootstrap sample is used to grow the tree.
• The remaining data are said to be “out-of-bag”
• The out-of-bag (oob) data can serve as a test set for the tree grown on the 

bootstrap sample.

• For each subject, get classification in out-of-bag trees.
• For each case, the RF prediction is either correct or incorrect

• Average over the subjects within each class to get a classwise oob error 
rate

• Average over all subjects to get an overall oob error rate



Prostate Example
• Classification tree for I(treated with radiation)
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log(glandvol) + txyeargroup , data = data, method = 'class' , control = list(cp = 0.001))



Prostate Example

AGE_CAT = Q1,Q2,Q3

comorbid = 0,2

txyeargr = Gr2,Gr3

txyeargr = Gr3

log(psa) < 2.4

txyeargr = Gr1

comorbid = 0

log(psa) < 1.8

log(glan < 3.5

0

0 1

0

0

0

0 1

1

1

yes no

Who is classified as being treated with radiation?

Note: We might get more “sensible” groupings by 
considering an ensemble method like bagging/boosting

Pruned Tree for I(Radiation)

RADIATION

SURGERY



Prostate Example
• Regression tree for log(PSA)
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fit = rpart(log(psa)~AGE_CAT+radiation+stage+ caucasian +pni+comorbidity+ 
log(glandvol) + txyeargroup , data = data, method = 'anova' , control = list(cp = 0.001))



An additional topic: 
Evaluating Risk Prediction Models with ROC Curves



Sensitivity and Specificity

• Sensitivity = a/(a+b) = P(Test Positive | Diseased)
• Specificity = d/(c+d) = P(Test Negative | Not Diseased)

• Can also estimate for continuous risk predictors (tests)



Sensitivity/Specificity for Continuous Scores
• Want to know sensitivity/specificity of continuous score X for disease status

• Consider different thresholds, c where X>c is a positive test
Specificity = P(X < c | D = 0)
Sensitivity = P(X > c | D = 1)

• Can estimate these quantities for different values of c
• Gives curve of sensitivity and specificity values depending on c



ROC Curves

https://www.mailman.columbia.edu/research/population-health-methods/evaluating-risk-prediction-roc-curves

TP = Sensitivity vs. FP = 1-Specificity

Measure of Discrimination

Note: figure is misleading, “good” depends on 
your problem

AUC = Area under ROC Curve

Higher AUC = better discrimination



Prostate Data
• Model whether subjects assigned to radiation vs. surgery based on covariates
Model 1: All covariates in full model Model 2: Gleason Only

ROC for Full Model, AUC =  0.81
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ROC for Reduced Model, AUC =  0.61
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A “Real” Example using External Validation
• External validation better measure of model quality
• Compare online prediction calculators for 5-year survival for patients with 

Oropharyngeal cancer with observed UM data

AUC just using cancer stage: 0.70

Beesley et al. 2019 “Individualized Survival Prediction for Patients with Oropharyngeal Cancer in the Human Papillomavirus Era” 



Exploring Calibration
• Calibration of online calculators with observed survival probabilities 



Exploring Risk Stratification
• How well do the calculators stratify patients by risk?



Questions?


