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THE BAYESIAN MACHINERY

1. Set up parametric models

I Prior

I Likelihood

2. Compute posterior distribution using Bayes’ theorem
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EXAMPLE: BIOASSAY EXPERIMENT

The scientific problem:

I Bioassay experiment: toxicity tests on animals

I Various dose levels of the drug compounds apply to
batches of animals

I Responses typically characterized by a binary outcome:
alive or dead

The data

I of the form (xi,ni, yi), i = 1, ..., k

I xi: dosage of the ith dose level

I ni: number of animals experimented with ith dose level

I yi: number of positive outcomes for the ith dose level
(yi ≤ n)
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SAMPLE DATA: BIOASSAY EXPERIMENT
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MODELING DOSE-RESPONSE RELATIONSHIP
Likelihood modeling
I Outcomes of animals within each dosage group are

exchangeable: reasonable to assume

yi | θi ∼ Bin(ni, θi)

I Linking θi to dose levels
I Linear relation?

θi = α+ βxi

I Logistic modeling

θi =
exp(α+ βxi)

1 + exp(α+ βxi)

or equivalently,

logit(θi) = α+ βxi
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THE PRIOR DISTRIBUTION

specify parametric model for p(α, β)

I Without any prior knowledge, a flat prior is often assumed

p(α, β) ∝ 1

I Implies α and β are independent

I All combinations of (α, β) are equally likely

I Also an example of improper prior

I Is the prior informative?
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APPLYING BAYES’ THEOREM

I The likelihood function

p(yi | α, β,ni, xi) ∝
[

exp(α+ βxi)

1 + exp(α+ βxi)

]yi
[

1− exp(α+ βxi)

1 + exp(α+ βxi)

]n−yi

I The prior
p(α, β) ∝ 1

I The posterior

p (α, β | (x1,n1, y1), ..., (xk,nk, yk)) ∝
k∏

i=1

p(yi | α, β, ni, xi)

I Even for such simple problem, there is no closed-form
expression for the posterior distribution
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REPRESENTING THE POSTERIOR DISTRIBUTION

I Left panel: contour plot for the posterior density

I Right panel: scatter plot of 1000 draws from the posterior
distribution
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REMARKS ON THE BIOASSAY EXPERIMENT

I The posterior indicates large degree of uncertainty on
(α, β)

I Posterior mode coincides with the maximum likelihood
estimates (why?)

I What is the impact of our prior choice?
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SETTING UP PRIORS

I Prior is part of the model assumptions

I “All models are wrong, but some are useful”

I In general, priors have less impact on the posteriors if the
data are strongly informative

10 / 18



COMMON CONSIDERATIONS FOR PRIOR

CONSTRUCTION

I Enable analytic computation of posteriors: conjugate prior

I Example: normal prior for the mean parameter of a normal
likelihood

I Jefferey’s invariance principle

I Flat/“non-informative” prior

I Use of informative prior from expert’s opinion or existing
data
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BAYESIAN COMPUTATION

I Posterior computation via Bayes’ theorem is typically
intractable except a few special cases (e.g., conjugate
priors)

I In most cases, priors and likelihood functions can be
analytically computed

I The normalizing constant, which requires computing an
integral, is difficult to obtain

I The general strategy for posterior computation is by
numerical approximation: Markov Chain Monte Carlo
(MCMC) algorithms
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BAYESIAN MODEL FOR VARIABLE SELECTION

I The problem: Identify potentially multiple associations
from a linear model

I The likelihood is based on a multiple linear regression
model

y = µ1 +

p∑
j=1

βjgj + e, e ∼ N(0, τ−1I)

I Define γj := 1(βj 6= 0), a latent indicator of association
status for the jth predictor

I Interested in infer γ := (γ1, ..., γp)

I In statistical terms, βj’s and τ are considered nuisance
parameters.
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BAYESIAN MODEL FOR VARIABLE SELECTION

(CONT’D)

Priors

I γi’s are assumed exchangeable

γi | θ ∼ Bernoulli(θ)

I βj | γj = 1 ∼ N(0, 1)

I The induced marginal prior on βj is known as a
“spike-and-slab” prior

I τ ∼ Γ(a, b)
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BAYESIAN MODEL FOR VARIABLE SELECTION

(CONT’D)

Considerations for hyper-parameters θ, a, b

I In most cases, we believe true association signals are
sparse and set θ = 1

p

I For reasonably large sample size, the inference result is less
sensitive to the choice of (a, b)

I Typically set a flat prior by letting a→ 0, b→ 0.
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INFERENCE FOR BAYESIAN VARIABLE SELECTION

MODEL

I Need to find Pr(γ | y,G)

I Compute marginal likelihood function P(y | γ,G)

I The computation requires to integrate out the nuisance
parameters βk’s and τ

I In this case, the marginal likelihood can be analytically
evaluated

I What is the normalizing constant?

∑
γ ′

Pr(γ ′)P(y | γ ′,G)

I For large p, the exact computation is practically impossible,
approximated computation is warranted.
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ADVANTAGES AND CHALLENGES IN BAYESIAN

VARIABLE SELECTION MODEL

Advantages

I It is a model designed for discovering associations (not for
predictions)

I It is expandable if annotation data (dj’s) on predictors
become available

logit(θj) = α+ βdj

I The posterior provides comprehensive information rather
than reporting a single “best” model

Challenges

I computation and scalability
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FUTURE DIRECTIONS

I Recommended readings

I Topics not thoroughly discussed

I Bayesian computation

I Bayesian model diagnosis

I Bayesian Frequentist compromise
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