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AN OVERVIEW

I Named after Thomas Bayes (1701 - 1761)

I What is Bayesian statistics

I a mathematical procedure that applies probabilities to
statistical problems

I provides the tools to update people’s beliefs in the evidence
of new data.

I Bayesian approach is trending in big data era
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A BRIEF HISTORY OF BAYESIAN STATISTICS

I 1700s, Bayes’ Theorem

I 1800s, Pierre-Simon Laplace (the man who did all)
formalized and popularized Bayesian inference

I In decline since early 20th century with the development
of Fisherian and Frequentist statistics

I 1940s, Alan Turing’s Bayesian system decoded German
Enigma Machine

I 1960s, revival of the Bayes’ theorem: theory and
computation work

I Current day practice: broadly used in medicine, economy
and all branches of sciences
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CONDITIONAL PROBABILITY

Pr(A | B)

I Probability of event A given event B has occurred

I Pr(A | B) = Pr(A∩B)
Pr(B)

I Fundamental in probability theory and statistics
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BAYES’ THEOREM

Pr(X | data) =
Pr(X) Pr(data | X)

Pr(data)

=
Pr(X) Pr(data | X)

Pr(data)

=
Pr(X) Pr(data | X)

Pr(X) Pr(data | X) + Pr(Xc) Pr(data | Xc)

I Pr(X): prior probability/distribution

I Pr(data | X): likelihood

I Pr(X | data): posterior probability/distribution

5 / 17



APPLICATION OF BAYES THEOREM

If 1% of a population have a specific form of cancer, for a
screening test with 80% sensitivity and 95% specificity, What is
the chance that a patient has the cancer if he tests positive?

I Sensitivity: Pr(test + | cancer) = 80%

I Specificity: Pr(test− | no cancer) = 95%

Pr(cancer | test +) =
Pr(cancer) Pr(test + | cancer)

Pr(test +)

=
0.01× 0.80

0.01× 0.80 + 0.99× 0.05
≈ 13.9%
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APPLICATION OF BAYES THEOREM (CONT’D)

I Most positive tests (≈ 86% ) are actually false alarms

I But is the prior Pr(cancer) = 0.01 reasonable to use here?
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THE PROCESS OF BAYESIAN INFERENCE

The Bayesian Machinery

1. Define a parametric model (prior, likelihood)

2. Apply Bayes Theorem and compute the posterior for the
parameters of interest

3. Posterior distributions contain full information of
inference result
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THE BAYESIAN PHILOSOPHY

I The Bayesian inference process is a byproduct of multiple
statistical/scientific principles

I They start from different perspectives and all conclude
that statistical inference results should be summarized in
form of posterior distributions

I This also leads to different interpretations of probabilities

I Bayesian: probability is simply a quantification of
uncertainty

I Frequentist: probability reflects a long-run frequency
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ARGUMENT 1: COHERENCE OF DECISION MAKING

I Need principled approach to make decision accounting for
uncertainty

I Consider make a prediction, δ(x), with respect to an
unknown event Y based on observed data X = x

I Coherent decision should be informed by the posterior
distribution p(Y | X = x) and some pre-defined “loss”
function

I Inevitably, it requires a prior distribution and apply Bayes
theorem
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ARGUMENT 2: THE LIKELIHOOD PRINCIPLE

I Sufficiency Principle (S): irrelevance of observations
independent of a sufficient statistic

I Conditionality Principle (C): irrelevance of (component)
experiments not actually performed

I The voltmeter story: https://en.wikipedia.org/
wiki/Likelihood_principle

I Likelihood Principle (L): irrelevance of outcomes not
actually observed
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THE LIKELIHOOD PRINCIPLE (CONT’D)

I (almost) All statisticians accept S and C

I It has been shown (Birnbaum, 1962) that

S + C→ L

i.e., all data scientists should accept L

I Bayesian inference process follows the likelihood principle
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ARGUMENT 3: EXCHANGEABLILITY
Bayesian inference provides more flexible and realistic
modeling options

Consider tossing a coin with a sequence of outcomes :
X1,X2, ....

I The random sequence is often modeled as independent
identically distributed (i.i.d)

I Are the sequence of outcomes really independent?
Note that, independence implies

Pr(X1,X2, ...,Xp) =

p∏
i=1

Pr(Xi)

Pr(Xp | X1,X2, ...,Xp−1) = Pr(Xp)

I But the sequence of outcomes share the information on the
biasness of the coin!

13 / 17



ARGUMENT 3: EXCHANGEABLILITY
Bayesian inference provides more flexible and realistic
modeling options

Consider tossing a coin with a sequence of outcomes :
X1,X2, ....

I The random sequence is often modeled as independent
identically distributed (i.i.d)

I Are the sequence of outcomes really independent?
Note that, independence implies

Pr(X1,X2, ...,Xp) =

p∏
i=1

Pr(Xi)

Pr(Xp | X1,X2, ...,Xp−1) = Pr(Xp)

I But the sequence of outcomes share the information on the
biasness of the coin!

13 / 17



EXCHANGEABLILITY (CONT’D)

I A more realistic modeling assumption is to treat the
sequence exchangeable

I Mathematically, it means Pr(X1, ...,Xp) is invariant to the
permutations of indexes (1, ..., p).

I An independent sequence is obviously exchangeable, but
an exchangeable sequence does not need to be
independent!
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DE FINETTI THEOREM

The de Finetti theorem indicates

Pr(X1, ...,Xp) =

∫ [ p∏
i=1

Pr(Xi | θ)

]
p(θ)dθ,

for any exchangeable sequence.

I θ represents the biasness of the coin

I Conditional on θ, the sequence is i.i.d

Pr(X1, ...,Xp | θ) =
p∏

i=1

Pr(Xi | θ)

I Because θ is unknown, the probability of the sequence has
to be averaged over the uncertainty of θ (a prior
distribution!)
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MODEL EXCHANGEABILITY

I Requires a prior distribution

I Give rise to a hierarchical model

I Hierarchical model as a probabilistic generative model
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SUMMARY

I What is Bayesian statistics

I The machinery of Bayesian inference

I The foundations of Bayesianism

Next

I Apply Bayesian principle to build statistical models for
data analysis problems
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