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Intro



Learning Objectives

• Identify sources of correlation in datasets
• Understand intuition behind correlation and be comfortable
with the mathematical definition

• Gain exposure to models for correlated data
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Before we begin...

Access R files through:

• Github:
https://github.com/realirena/bdsi_2022

• Option 1: clone the repository and work along in the “.Rmd” file
on your local R

• Option 2: Download the “.html” file and follow along on your
laptop
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What is correlation?



Intuition behind Correlation

• Statistical models generally want to relate predictor variable X
to an outcome variable Y

• Correlation is one summary that measures the degree of
association (relationship) between two variables

• If X is not correlated with Y, this is not a particularly interesting
question
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Correlated Data Models

• Correlated data models focus on measuring other sources of
correlation

• Want to reduce other variation (noise) sources in the data so
that we can focus on X, Y

• For example: observations of X could be correlated
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Example of Correlation

A researcher is interested in college students’ dietary patterns. She
picks a neighborhood at random and goes door-to-door interviewing
any college students she encounters.

1. Are there any potential sources of correlation in the collected
data?

2. What could improve this study design?
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Example of Correlation

Your supervisor asks you to analyze some data to determine if
individual mobility patterns can predict risk of contracting disease.
You collect mobile phone data on individual travel patterns over
time and whether or not the individual contracted the disease.

Your supervisor suggests that you run a simple linear regression
using the distance traveled on each day to predict whether or not
the individual contracted the disease on that day.

1. What are some potential sources of correlation in this data?
2. Based on your answer to Q1, would you fit the suggested linear
regression model?
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Mathematical Definition of Correlation

• Pearson Correlation Coefficient: common method of measuring
correlation between two variables

• Mathematical definition: ρ(X, Y) = E[(X− µx)− (Y− µy)]

σxσy
1. E[(X− µx)− (Y− µy)] : covariance between X, Y
2. σx, σy : standard deviations of X, Y
3. Correlation is a standardized measurement of covariance

• Related to independence, but not equivalent
• If X, Y are independent, ρ(X, Y) = 0
• X, Y are independent iff P(X|Y) = P(X)

Brain Teaser: What is the correlation between a random variable and
itself? (i.e. cor(X, X) =?)
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Identifying correlation in datasets



Three Examples of Correlation in Datasets

1. Clustered Data
2. Time Series Data
3. Longitudinal Data
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Clustered Data

Idea: Dataset can be “clustered” into groups

• Correlation can be within group or between group
• Hierarchical structure to the data
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Clustered Data

Idea: Dataset can be “clustered” into groups

• Correlation can be within group or between group
• Hierarchical structure to the data

Things to consider:

1. What is the definition of a cluster?
2. What is the goal of clustering?
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Examples of Clustered Data

• Spatial data
• Network data (e.g. social media communities)
• Genotyping clustering

Figure 1: Originally from:
https://www.nytimes.com/interactive/2021/us/covid-cases.html
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K-means clustering algorithm

• Sometimes the clusters are predefined beforehand
• In other settings, the goal might be to identify clusters
• We can use classification algorithms

Figure 2: Example of data with k-means clustering, originally
from:https://mubaris.com/posts/kmeans-clustering/
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R Example

• We will use a subset of the WHO dataset (in github) for the
k-means algorithm

• This dataset contains observations by country and year on
health, economic, and social indicators

• Question: Can we detect clusters of countries that share
similarities, based on these variables?
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K-means clustering algorithm

• One of the most well-known algorithms
• Groups n observations into k clusters
• Specify k beforehand
• Requires continuous data
• Unsupervised algorithm
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K-means clustering algorithm

For a set of observations x1, . . . , xn and k clusters S1, . . . SK, we want
to minimize:

argmin
Si

K∑
i=1

∑
xi∈Si

∥xi − µi∥2 = argmin
S

K∑
i=1

| Si | VarSi

• µi = mean of the points in Si
• Goal is to minimize the amount of variability in each Si (cluster)
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K-means clustering algorithm

1. Pick K random points as cluster centers called centroids.
2. Assign each xi to nearest cluster by calculating its distance to
each centroid.

3. Find new cluster center by taking the average of the assigned
points.

4. Repeat Step 2 and 3 until none of the cluster assignments
change.

Visualization: http://shabal.in/visuals/kmeans/6.html
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K-means clustering algorithm

Brain Teaser: Now that we have these clusters, it might be
interesting to know if these are significant. Can we run a test or
statistical model to see if these clusters are significant?
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K-means clustering algorithm

• Traditional statistical methods require a hypothesis before data
collection

• Using the same data twice will inflate Type 1 error
• The clusters are likely significant because we found them!
• We either need new data or novel statistical approaches
• Check out Dr. Daniela Witten’s research lab at UW for “double
dipping” methods
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Time Series Data

A data sequence taken at different points in time.

Example: Companies’ stock market prices are time series, e.g.
Xit = Xi,t−1 + ϵit

Figure 3: 2020 stock prices, originally from: https://medium.com/analytics-
vidhya/plot-stock-prices-with-r-6bdbaebc8ec1 20



Time Series Data

A data sequence taken at different points in time.

Example: Companies’ stock market prices are time series, e.g.
Xit = Xi,t−1 + ϵit

• Data is not i.i.d.
• Time index (ordering) matters!
• Potential contamination: Using Xit to predict Xi,t−1
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Time Series Data

Other examples of time series:

• Disease outbreak
• vehicle navigation prediction
• Signal processing

Figure 4: Image produced by https://plus.maths.org/

22



Time Series Data Example: AR(1) Model

Let’s return to our R script and dataset.

• We will analyze a univariate time series in this example
• Botswana has annual estimated life expectancy from 2000-2015
• Goal: Predict future life expectancy values based on past data
on life expectancy
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AR(1) Model

A simple first order AR model has the form:

yt = β0 + β1yt−1 + ϵt, t = 2, · · · , T
ϵt ∼ N (0, σ2ϵ)

• yt−1 is the value of y at the previous timepoint
• y0 usually taken to be a constant
• Key difference: The predictor, yt−1 is random (stochastic).
• In linear regression, the predictors are treated as fixed
(deterministic).
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Visualizing the AR(1) Model

Figure 5: Scatterplot of life expectancy over time for Botswana.
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Visualizing the AR(1) Model

Figure 6: Scatterplot of lagged life expectancy and life expectancy. There
appears to be evidence for a linear relationship.
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AR(1) Model

1. Format the Life expectancy variable as a time series using ts()
2. Fit the AR(1) model using arima()
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Linear Regression compared with AR(1) Model

Figure 7: Plots of fitted vs observed values from a linear regression model
and an AR(1) model. 28



Longitudinal Data

Data collected over time from the same subjects

• Sometimes called panel data because of its dimensions (time
and subjects)

• Can think of this as combination of clustered data and time
series data

• Goal: want to estimate population effects (like in linear
regression) but also account for individual variations
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Longitudinal Data Example

• Our WHO dataset contains Life expectancy for each country from
2000-2015

• Also includes covariates (health, economic, social factors)
• Question: Is alcohol consumption predictive of adult mortality?
Should we assume that this varies by country?

• Logical assumption: Observations within a country are more
likely to be correlated over time
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Methods for Longitudinal Data

• Linear Mixed Models:
• Accounts for individual variations in the dataset
• Maintains interpretability for population and individual effects

• Generalized Estimating Equations:
• alternative approach to LMMs
• Integrates out the individual variations in the dataset
• Robust to model misspecification
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Linear Mixed Model

LifeExpectancyij = Xβ + Zbi + ϵij (1)

• β = coefficients for population effects
• bi = coefficients for individual effects
• bi measures how much each individual i deviates from the
overall population trend

• X: predictor variables for population effects
• Z: subset of X, covariates that could impact deviations from
population trend
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Linear Mixed Model: Visualization

Figure 8: Linear Mixed Model with random intercept. Originally published in:
https://peerj.com/articles/4794/
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Linear Mixed Model: Visualization

Figure 9: Linear Mixed Model with random intercept and slope. Originally
published in: https://peerj.com/articles/4794/
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Linear Mixed Model

• We will fit an LMM using Adult mortality as the outcome variable
and Alcohol consumption and Year as the covariates

• Give each country a random intercept b0i
• This means that country is allowed to have a different starting
value than the population average
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Coding Example: Linear Mixed Model

1. Alcohol consumption does not appear to be predictive of
mortality

2. Time (Year) is significantly associated with mortality
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Examining the Random Effects Variance

1. If var(b0i) were close to 0, we might be able to get away with
linear regression

2. Estimated variance of b0i is high, indicating that there is a lot of
within-country variability

3. We could try to fit this model with a random slope as well (can
try yourself in the next code block!)
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Plotting the Best Linear Unbiased Predictions

Figure 10: Predicted values for each country, compared to observed mortality
values.
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What happens if we ignore
correlation?



Correlated Data Models

What happens if we ignore correlation in datasets?

• Linear Regression assumes all observations are independent
• LMM (usually) assumes that between-individual observations
are independent, but correlation can exist within-individuals
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Correlated Data Models

What happens if we ignore correlation in datasets?

• Linear Regression assumes all observations are independent
• LMM (usually) assumes that between-individual observations
are independent, but correlation can exist within-individuals
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Coding Example: Linear Regression vs Linear Mixed Model
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Coding Example: Linear Regression

1. Alcohol is significantly associated with Mortality
2. Time (Year) is also significantly associated with Mortality
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Coding Example: Linear Mixed Model, accounting for within-
country correlation

1. Estimate of Alcohol consumption coefficient is a lot lower
2. Standard error estimate for alcohol is almost double
3. Effect of alcohol is no longer significant
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Coding Example: Linear Mixed Model, accounting for within-
country correlation

• When we account for within-country correlations, the variability
between observations decreases

• Overall “sample size” also decreases since observations are
grouped by individuals

• Standard errors are not artificially deflated as a result
• This means chance of Type 1 error (false positive) is higher if you
fit a linear regression
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Conclusion



Recap

• Many potential sources of correlation in data
• Three types of correlated data
• Ignoring correlation can lead to biased statistical results
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Questions?
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License

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme itself is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

cba
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