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Motivation



Regression Models

Regression is a statistical technique for modeling the relationship between

explanatory variable(s) and response variable(s).

Regression allows us to model relationships adjusted for other factors! 2



Multivariable Linear Regression

Notation:

Yi : Response for i-th observation

Xij : j-th explanatory variable for i-th observation

Linear Regression Model:

Yi = β0 + β1Xi1 + . . .+ βpXip + ϵi , ϵi ∼ N(0, σ2), i = 1, . . . , n

Alternative Notation:

Yi = x⊤
i β + ϵi , x⊤

i = (1,Xi1, . . . ,Xip), β = (β0, β1, . . . , βp)
⊤
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Multivariable Linear Regression Assumptions

Systematic Component:

E [Yi | x i ] = µi = x⊤
i β

We will sometimes use E [Yi ] as shorthand for E [Yi | x i ].

Random Component: At each level of the predictor, variation in the

response is characterized as N(0, σ2)

Independence Between Observations
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What if Yi is Binary?

Histogram of a Binary Variable

Binary Variable

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

5



What if Yi is Binary?

If Yi is binary, then

Yi ∼ Bernoulli(πi ), πi = π(x i ) = P(Yi = 1 | x i )

Normality Assumption is violated!

Additionally,

E [Yi ] = πi

V (Yi ) = πi (1− πi ) = E [Yi ]{1− E [Yi ]}

Constant variance assumption is violated!

Predictions from the resulting linear regression model, Ŷi = x⊤
i β̂, are not

restricted to be between 0 and 1.

Idea: Model a function of E [Yi ] rather than E [Yi ] directly.
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Types of Outcome Data

Need a more general framework for non-normal outcome data:

• Continuous, non-normal response

− Time-to-event data

• Binary response

− Disease vs No Disease

• Nominal categorical response

− Blood type, US state

• Ordinal categorical response

− Likert scale data

• Count response

− White blood cell count, number of insurance claims
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Generalized Linear Models

(GLMs)



Generalized Linear Models

Generalization here refers to the fact that we are:

• Removing the normality requirement

• Relaxing the constant variance assumption

• Allowing for a function of E [Yi ] to be linear in the parameters

GLMs are based on the exponential family of distributions.
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Exponential Family of Distribution

A distribution is in the exponential family of distributions if:

f (Yi ; θi , ϕ) = exp

{
t(Yi )θi − b(θi )

a(ϕ)
+ c(Yi , ϕ)

}
Notes:

• θi : parameter of interest, relates to the mean function E [Yi | x i ]

• ϕ: Dispersion parameter, relates to the variance

• t(·), a(·), b(·), and c(·, ·) are functions

• If t(Yi ) = Yi , then the family is in canonical form and θi is called

the canonical (natural) parameter.
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Mean and Variance of Canonical Exponential Family

We can use maximum likelihood theory to show that:

E [Yi ] =
d

dθi
b(θi ) = b′(θi )

V (Yi ) =
d2

dθ2i
b(θi )a(ϕ) = b′′(θi )a(ϕ)

Notice that E [Yi ] depends only on the natural parameter, while V (Yi )

depends on both the natural parameter and the dispersion parameter.
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Example: Normal Response (with known σ2)

Suppose that Yi ∼ N(µi , σ
2), as in linear regression. Then,

f (Yi ) =
1√
2πσ2

exp

{
− 1

2σ2
(Yi − µi )

2

}

= exp

{
− 1

2σ2
(Yi − µi )

2 − log(2πσ2)

}
= exp

{
2Yiµi − Y 2

i − µ2
i

2σ2
− log(2πσ2)

}
= exp

{
Yiµi − µ2

i /2

σ2
− Y 2

i

2σ2
− log(2πσ2)

}

11



Example: Normal Response (with known σ2)

Suppose that Yi ∼ N(µi , σ
2), as in linear regression. Then,

f (Yi ) =
1√
2πσ2

exp

{
− 1

2σ2
(Yi − µi )

2

}
= exp

{
− 1

2σ2
(Yi − µi )

2 − log(2πσ2)

}

= exp

{
2Yiµi − Y 2

i − µ2
i

2σ2
− log(2πσ2)

}
= exp

{
Yiµi − µ2

i /2

σ2
− Y 2

i

2σ2
− log(2πσ2)

}

11



Example: Normal Response (with known σ2)

Suppose that Yi ∼ N(µi , σ
2), as in linear regression. Then,

f (Yi ) =
1√
2πσ2

exp

{
− 1

2σ2
(Yi − µi )

2

}
= exp

{
− 1

2σ2
(Yi − µi )

2 − log(2πσ2)

}
= exp

{
2Yiµi − Y 2

i − µ2
i

2σ2
− log(2πσ2)

}

= exp

{
Yiµi − µ2

i /2

σ2
− Y 2

i

2σ2
− log(2πσ2)

}

11



Example: Normal Response (with known σ2)

Suppose that Yi ∼ N(µi , σ
2), as in linear regression. Then,

f (Yi ) =
1√
2πσ2

exp

{
− 1

2σ2
(Yi − µi )

2

}
= exp

{
− 1

2σ2
(Yi − µi )

2 − log(2πσ2)

}
= exp

{
2Yiµi − Y 2

i − µ2
i

2σ2
− log(2πσ2)

}
= exp

{
Yiµi − µ2

i /2

σ2
− Y 2

i

2σ2
− log(2πσ2)

}

11



Example: Normal Response (with known σ2)

Suppose that Yi ∼ N(µi , σ
2), as in linear regression. Then,

f (Yi ) = exp

{
Yiµi − µ2

i /2

σ2
− Y 2

i

2σ2
− log(2πσ2)

}
The normal distribution is a member of the canonical exponential family:

t(Yi ) = Yi

θi = µi

b(θi ) = µ2
i /2

a(ϕ) = σ2

c(Yi , ϕ) = − Y 2
i

2σ2
− log(2πσ2)

Mean and Variance: E [Yi ] = b′(θi ) = µi and V (Yi ) = b′′(θi )a(ϕ) = σ2
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Example: Poisson Response

Suppose that Yi ∼ Poisson(λi ), where Yi ∈ {0} ∪ Z+

f (Yi ) =
e−λiλYi

i

Yi !

= exp

{
Yi log(λi )− λi − log(Yi !)

}
The Poisson distribution is a member of the canonical exponential family:

t(Yi ) = Yi

θi = log(λi )

b(θi ) = λi = eθi

a(ϕ) = 1

c(Yi , ϕ) = − log(Yi !)

Mean and Variance: E [Yi ] = b′(θi ) = λi and V (Yi ) = b′′(θi )a(ϕ) = λi
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Exercise: Binary Response

Suppose that Yi ∼ Bernoulli(πi )

f (Yi ) = πYi

i (1− πi )
1−Yi , Yi ∈ {0, 1}

Questions:

• Is the Bernoulli distribution a member of the canonical exponential

family? If yes, what is E [Yi ] and V (Yi )?

Canonical Exponential Family:

f (Yi ; θi , ϕ) = exp

{
Yiθi − b(θi )

a(ϕ)
+ c(Yi , ϕ)

}
E [Yi ] = b′(θi ), V (Yi ) = b′′(θi )a(ϕ)
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Solution: Binary Response

Suppose that Yi ∼ Bernoulli(πi )

f (Yi ) = πYi

i (1− πi )
1−Yi

= exp

{
Yi log(πi ) + (1− Yi ) log(1− πi )

}
= exp

{
Yi log

(
πi

1− πi

)
+ log(1− πi )

}
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Solution: Binary Response

Suppose that Yi ∼ Bernoulli(πi ). Then,

f (Yi ) = exp

{
Yi log

(
πi

1− πi

)
+ log(1− πi )

}
Bernoulli distribution is a member of the canonical exponential family:

t(Yi ) = Yi

θi = log

(
πi

1− πi

)
=⇒ πi =

eθi

1 + eθi

b(θi ) = − log(1− πi ) = log(1 + eθi )

a(ϕ) = 1

c(Yi , ϕ) = 0

E [Yi ] = b′(θi ) = eθi/(1 + eθi ), V (Yi ) = b′′(θi )a(ϕ) = eθi/(1 + eθi )2
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Generalization Checklist

Generalization here refers to the fact that we are:

• Removing the normality requirement ✓

• Relaxing the constant variance assumption ✓

• Allowing for a function of E [Yi ] to be linear in the parameters ?
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Link Function

Generalized Linear Model:

g(µi ) = x⊤
i β, µi = E [Yi ]

Details:

• g(·) is called the link function, connects µi and x i

• g(·) is required to be monotone and differentiable

• g(·) is called the canonical link if ηi = θi , where ηi = x⊤
i β

• Linearity assumption now applies to g(µi ), g(µi ) ∈ (−∞,∞)

• Still assume that Y1, . . . ,Yn are independent
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Canonical Link Examples

Normal Response:

θi = µi , ηi = x⊤
i β =⇒ µi = x⊤

i β, E [Yi ] = µi

Bernoulli Response:

θi = log

(
πi

1− πi

)
, ηi = x⊤

i β =⇒ log

(
πi

1− πi

)
= x⊤

i β, E [Yi ] = πi

Poisson Response:

θi = log(λi ), ηi = x⊤
i β =⇒ log(λi ) = x⊤

i β, E [Yi ] = λi
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Canonical Link or Non-Canonical Link?

Canonical links mostly lead to mathematical/algorithmic simplifications,

but are not intrinsically better to use than non-canonical links.

The link function is often chosen based on (not an exhaustive list):

• Type of response variable

• The desired interpretability of parameters in your model

• Model fit

• Whether the model specification makes conceptual sense

My recommendation is to default to the canonical link, and only use

non-canonical links if there is an explicit rationale.
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GLM Specification (Canonical Exponential Family)

• Random Component: Assume that Y1, . . . ,Yn come from a

distribution within the exponential family of distributions:

f (Yi ; θi , ϕ) = exp

{
Yiθi − b(θi )

a(ϕ)
+ c(Yi , ϕ)

}

• Systematic Component (Linear Predictor): ηi = x⊤
i β

• Link Function: ηi = g(µi ) =⇒ µi = g−1(ηi )
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Specific Types of GLMs



GLMs for Continuous Responses

Linear Regression Model:

• Assumes a normally distributed response

• Generally good for symmetric responses

• Response takes values in (−∞,∞)

Gamma Regression Model:

• Assumes a gamma distributed response

• Less common, but applicable for right-skewed responses

• Response takes values in (0,∞)

Note: Alternatively, we can log-transform a right-skewed, positive

response variable and use the linear regression framework.
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Bernoulli Responses

Logistic Regression (Canonical Link):

logit(πi ) = log

(
πi

1− πi

)
= x⊤

i β, πi = P(Yi = 1 | x i )

Use as the default link function for binary responses.

Probit Regression:

Φ−1(πi ) = x⊤
i β, Φ(·) is the standard normal CDF

Use when you can think of your binary response as being obtained by

thresholding a normally distributed latent variable.

Complementary log-log (cloglog) Regression:

log{− log(1− πi )} = x⊤
i β

Use when you can think of your binary response as quantifying whether a

count response is nonzero, with the count being Poisson distributed.

http://bayesium.com/which-link-function-logit-probit-or-cloglog/
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Multinomial Responses

Generalized Logit Model (Nominal):

log

(
πij

πi0

)
= x⊤

i βj , j = 1, . . . , J

πij = P(Yi = j | x i ) =
{exp(x⊤

i βj)}
1 +

∑J
k=1 exp(x

⊤
i βk)

, πi0 = 1−
J∑

k=1

πik

Can also use this model for ordinal data.

Cumulative Logit Model (Ordinal):

log

(
P(Yi ≤ j)

P(Yi > j)

)
= x⊤

i βj , j = 0, . . . , J − 1
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Count Responses

Poisson Regression (Likelihood):

log(λi ) = x⊤
i β, E [Yi ] = V (Yi ) = λi

λi controls the rate at which events happen.

Poisson Regression (Quasi-Likelihood):

log(λi ) = x⊤
i β

a(ϕ) = ϕ instead of a(ϕ) = 1 =⇒ E [Yi ] = λi , Var [Yi ] = ϕλi

• Used to correct for overdispersion (V (Yi ) > E [Yi ])

• Estimation of β is unchanged from regular Poisson regression

• Standard errors corresponding to β̂ are generally larger when

outcome is truly overdispersed

Offset:

log(λi ) = log(Ti ) + x⊤
i β, Ti = time over which counts were obtained
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Count Response Example in R



Data Example: Seizure Counts for Epileptic Individuals

Study Details (Thall and Vail, 1990):

• n = 59 participants with epilepsy.

• Randomized to Progabide (nt = 31) or placebo (np = 28).

• Number of seizures were recorded during an 8-week baseline period.

• Seizure counts were recorded for 4 successive 2-week periods.

Primary Research Question:

• Is Progabide use associated with fewer numbers of seizures in

epileptic individuals during the final two week period of follow-up?
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Data Example: Seizure Counts for Epileptic Individuals

Variables in Dataset:

• y: seizure count for the corresponding two week period

• trt: treatment, either placebo or Progabide

• base: seizure count in the 8-week baseline period

• age: individual’s age in years

• V4: binary (0, 1) indicator variable for the 4th period

• subject: subject identifier, 1 to 59

• period: indicator of the two-week time period (1, 2, 3 or 4)

• lbase: log-counts for the baseline period, centered to have mean zero

• lage: log-age, centered to have mean zero
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Poisson Regression Model with Canonical Link

We will use a Poisson regression model, since we have a count response.

Random Component:

Yi ∼ Poisson(λi )

Systematic Component and Link Function:

log(λi ) = β0 + βttrti + βaagei + βbbasei

Note that we do not need to be concerned with an offset term, because

the follow-up time is the exact same for all individuals!
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Descriptive Statistics
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Need to log-transform the baseline number of seizures!
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Descriptive Statistics

Note that the empirical variance (93.1) ≫ empirical mean (7.3)!

This suggests that we will need to account for overdispersion.
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Updated Regression Model

Random Component:

f (Yi ;λi , ϕ) = exp

{
Yi log(λi )− λi

ϕ
− log(Yi !)

}
Note that we have added overdispersion parameter ϕ.

Systematic Component and Link Function:

log(λi ) = β0 + βttrti + βaagei + βb lbasei

Note that we are now adjusting for lbase instead of base.
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Not Accounting for Overdispersion
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Accounting for Overdispersion
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Interpretation of Progabide Coefficient

Treatment Effect Estimate:

β̂t = −0.157

Mathematical Meaning of Treatment Effect:

log(E [Yi | trti = 1])− log(E [Yi | trti = 0]) = βt

Interpretation: Progabide lowers the log of the expected number of

seizures by 0.157 when compared with the placebo, adjusted for age and

the number of baseline seizures.

Not a very intuitive interpretation!
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Interpretation of Progabide Coefficient

Rate Ratio:

eβ̂t = 0.854

Mathematical Meaning of Rate Ratio:

E [Yi | trti = 1]

E [Yi | trti = 0]
= eβt

Interpretations:

(i) A person using Progabide is expected to have 85.4% of the number of

seizures as they would using the placebo, adjusted for age and the

number of baseline seizures.

(ii) A person using Progabide is expected to have 14.6% fewer seizures

than they would using the placebo, adjusted for age and the number of

baseline seizures.
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Predictions

General Formula for GLM Predictions:

Ŷi = g−1(x⊤
i β̂)

The predicted value for the first participant is:

Y1 = 3, Ŷ1 = exp(β̂0 + β̂t × 0 + β̂a × 31 + β̂b ×−0.7563538) = 2.28
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Inference (Confidence Intervals)

Interpretation: The probability that the true rate ratio is between 0.62

and 1.17 is 0.95.

Many other inferential techniques you can employ with GLMs!
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Summary

• GLMs are useful for modeling many different types of responses

• Requires Specification of:

− A random component from the exponential family

− Systematic component

− Link function

• Many of the concepts that apply to multivariable linear regression

continue to apply when using GLMs.

38



Contact Information

E-mail: bossjona@umich.edu
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