Difference between revisions of "Main Page"
Jump to navigation
Jump to search
Line 3: | Line 3: | ||
===Week 1 === | ===Week 1 === | ||
− | [[Media:Al-Marzouki_s05.pdf|Al-Marzouki]] - The effect of scientific misconduct on the results of clinical trials: A Delphi survey | + | [[Media:Al-Marzouki_s05.pdf|Al-Marzouki]] - The effect of scientific misconduct on the results of clinical trials: A Delphi survey\ |
− | [[Media: Baggerlycoombes.pdf|Baggerly Coombes]] - Deriving Chemosensitivity from cell lines: forensic bioinformatics and reproducible research in high-throughput biology | + | [[Media: Baggerlycoombes.pdf|Baggerly Coombes]] - Deriving Chemosensitivity from cell lines: forensic bioinformatics and reproducible research in high-throughput biology\ |
− | [[Media: Benjaminisignificance.pdf|Benjamini]] - Redefine statistical significance | + | [[Media: Benjaminisignificance.pdf|Benjamini]] - Redefine statistical significance\ |
− | [[Media: Ethicalguidelines.pdf|Ethical guidelines]] - Ethical Guidelines for Statistical Practice article | + | [[Media: Ethicalguidelines.pdf|Ethical guidelines]] - Ethical Guidelines for Statistical Practice article\ |
− | [[Media: Ethics_review.ppt|Ethics reviews]] - Ethical statistical practice review slides | + | [[Media: Ethics_review.ppt|Ethics reviews]] - Ethical statistical practice review slides\ |
− | [[Media: Moving_to_a_World_Beyond_p_0_05.pdf|Moving to a World beyond]] - Moving to a World Beyond “p < 0.05” | + | [[Media: Moving_to_a_World_Beyond_p_0_05.pdf|Moving to a World beyond]] - Moving to a World Beyond “p < 0.05”\ |
====On Being A Scientist: Responsible Conduct for Research in Science (RCRS) -- Dr. Bhramar Mukherjee==== | ====On Being A Scientist: Responsible Conduct for Research in Science (RCRS) -- Dr. Bhramar Mukherjee==== |
Revision as of 14:29, 13 July 2022
Contents
- 1 2022 Lectures
- 1.1 Week 1
- 1.1.1 On Being A Scientist: Responsible Conduct for Research in Science (RCRS) -- Dr. Bhramar Mukherjee
- 1.1.2 Cluster Computing -- Dan Barker
- 1.1.3 Study Design and Inference -- Dr. Rodrick Little
- 1.1.4 Observational Data, Bias -- Dr. Rodrick Little
- 1.1.5 Probability Review -- Soumik Purkayastha
- 1.1.6 Parameter Estimation & Likelihood -- Dr. Rodrick Little
- 1.1.7 Causal Inference -- Dr. Walter Dempsey
- 1.1.8 Linear Regression Review -- Soumik Purkayastha
- 1.1.9 Data Wrangling in R -- Mike Kleinsasser
- 1.1.10 Linear Algebra Review -- Rupam Bhattacharyya
- 1.1.11 Visualizing Data in R with ggplot2 -- Erin Hodgess
- 1.1.12 Journey Lecture -- Dr. Jeremy Taylor
- 1.2 Week 2
- 1.1 Week 1
2022 Lectures
Week 1
Al-Marzouki - The effect of scientific misconduct on the results of clinical trials: A Delphi survey\ Baggerly Coombes - Deriving Chemosensitivity from cell lines: forensic bioinformatics and reproducible research in high-throughput biology\ Benjamini - Redefine statistical significance\ Ethical guidelines - Ethical Guidelines for Statistical Practice article\ Ethics reviews - Ethical statistical practice review slides\ Moving to a World beyond - Moving to a World Beyond “p < 0.05”\
On Being A Scientist: Responsible Conduct for Research in Science (RCRS) -- Dr. Bhramar Mukherjee
Cluster Computing -- Dan Barker
- [Cluster Computing Slides]
- Recording
Study Design and Inference -- Dr. Rodrick Little
Observational Data, Bias -- Dr. Rodrick Little
Probability Review -- Soumik Purkayastha
Parameter Estimation & Likelihood -- Dr. Rodrick Little
Causal Inference -- Dr. Walter Dempsey
Linear Regression Review -- Soumik Purkayastha
Data Wrangling in R -- Mike Kleinsasser
Linear Algebra Review -- Rupam Bhattacharyya
-Recording
Visualizing Data in R with ggplot2 -- Erin Hodgess
Journey Lecture -- Dr. Jeremy Taylor
-Recording
Week 2
- Python Parts I & II -- Dr. Fred Feng
-Recording Part I -Recording Part II
- Generalized Linear Models Review -- Jon Boss
-Recording
- Python Parts III & IV -- Dr. Fred Feng
- Logistic Regression Review -- Elizabeth Chase
- Machine Learning -- Dr. Maggie Makar
- R Markdown -- Dr. Phil Boonstra
- Prediction Analysis -- Dr. Phil Boonstra
- Correlated Data Models -- Irena Chen
- Unsupervised Learning & Clustering -- Dr. Somayeh Molaei
- Journey Lecture -- Dr. Jean Morrison