From U-M Big Data Summer Institute Wiki
Jump to navigation
Jump to search
2022 Lectures
Week 1
On Being A Scientist: Responsible Conduct for Research in Science (RCRS) - Dr. Bhramar Mukherjee
Cluster Computing - Dan Barker
Study Design and Inference - Dr. Rod Little
Parameter Estimation and Likelihood - Dr. Rodrick Little
Probability Review - Soumik Purkayastha
Observational Data and Bias - Dr. Rod Little
Causal Inference - Dr. Walter Dempsey
Linear Regression Review - Soumik Purkayastha
Data Wrangling in R - Mike Kleinsasser
Linear Algebra Review - Rupam Bhattacharyya
Visualizing Data in R with ggplot2 - Erin Hodgess
Journey Lecture - Dr. Jeremy Taylor
Week 2
Python Parts I & II - Dr. Fred Feng
Generalized Linear Models Review - Jon Boss
Python Parts III & IV - Dr. Fred Feng
Logistic Regression Review - Elizabeth Chase
Machine Learning - Dr. Maggie Makar
R Markdown - Dr. Phil Boonstra
Prediction Analysis - Dr. Phil Boonstra
Correlated Data Review - Irena Chen=
Unsupervised Learning and Clustering - Dr. Somayeh Molaei
Journey Lecture - Dr. Jean Morrison
Week 3
Data Mining - Dr. Somayeh Molaei
Scientific Writing - Dr. Brett Griffiths
Pick Me! - Dr. Brett Griffiths
Model Selection - Yichen Si
Visualization Workshop - Diamond Buchanan
Health Data Science Concentration Presentation - Dr. Hui Jiang
Journey Lecture - Pedro Orozco del Pino
Week 4
Genetics and Genomics - Dr. Jean Morrison
Spatial Epidemiology - Dr. Jon Zelner
Intro to Bayes - Dr. William Wen
Stroke Disparities - Dr. Lynda Lisabeth
Personalized Medicine - Dr. Lars Fritsche
Missing Data - Dr. Peisong Han
Bioinformatics and Epidemiology Career Roundtable - Dr. Maureen Sartor
Human Centered Computing - Dr. Nikola Banovic